論文の概要: Secure and Confidential Certificates of Online Fairness
- arxiv url: http://arxiv.org/abs/2410.02777v2
- Date: Mon, 27 Oct 2025 11:37:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-28 22:08:13.6846
- Title: Secure and Confidential Certificates of Online Fairness
- Title(参考訳): オンラインフェアネスの安全と信頼性証明書
- Authors: Olive Franzese, Ali Shahin Shamsabadi, Carter Luck, Hamed Haddadi,
- Abstract要約: MLサービスの合法的かつ責任を負うためには、信頼性が不可欠である。
モデルフェアネスを評価する既存の方法は、(i)静的なデータセットに対してフェアネスを証明するため、秘密裏に信頼性を欠いている。
OATH(OATH)は,オンライングループフェアネス認定のための,デプロイ性が高くスケーラブルなゼロ知識証明プロトコルである。
- 参考スコア(独自算出の注目度): 8.681039636447865
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The black-box service model enables ML service providers to serve clients while keeping their intellectual property and client data confidential. Confidentiality is critical for delivering ML services legally and responsibly, but makes it difficult for outside parties to verify important model properties such as fairness. Existing methods that assess model fairness confidentially lack either (i) reliability because they certify fairness with respect to a static set of data, and therefore fail to guarantee fairness in the presence of distribution shift or service provider malfeasance; and/or (ii) scalability due to the computational overhead of confidentiality-preserving cryptographic primitives. We address these problems by introducing online fairness certificates, which verify that a model is fair with respect to data received by the service provider online during deployment. We then present OATH, a deployably efficient and scalable zero-knowledge proof protocol for confidential online group fairness certification. OATH exploits statistical properties of group fairness via a cut-and-choose style protocol, enabling scalability improvements over baselines.
- Abstract(参考訳): ブラックボックスサービスモデルにより、MLサービスプロバイダは、知的財産とクライアントデータの機密性を保ちながら、クライアントにサービスを提供することができる。
信頼性は、法的にかつ責任を持ってMLサービスを提供するために重要であるが、公正性のような重要なモデルプロパティを外部で検証することは困難である。
モデルフェアネスを秘密裏に評価する既存の方法
一 データの静的な集合に関する公正性を証明し、流通シフト又はサービス提供者不正の有無の公正性を保証することができないこと、及び/又は
(II)秘密保持暗号プリミティブの計算オーバーヘッドによるスケーラビリティ。
これは、デプロイ中にサービスプロバイダがオンラインで受信したデータに対して、モデルが公正であることを検証します。
OATH(OATH)は,オンライングループフェアネス認定のための,デプロイ性が高く,スケーラブルなゼロ知識証明プロトコルである。
OATHはグループフェアネスの統計特性をカット・アンド・チョース方式のプロトコルによって活用し、ベースラインよりも拡張性を向上させる。
関連論文リスト
- TrustLoRA: Low-Rank Adaptation for Failure Detection under Out-of-distribution Data [62.22804234013273]
本稿では,共変量および意味的シフトの両条件下での拒絶による分類を統一し,促進する,単純な故障検出フレームワークを提案する。
キーとなる洞察は、障害固有の信頼性知識を低ランクアダプタで分離し、統合することにより、障害検出能力を効果的かつ柔軟に向上できるということです。
論文 参考訳(メタデータ) (2025-04-20T09:20:55Z) - Robust Federated Learning Against Poisoning Attacks: A GAN-Based Defense Framework [0.6554326244334868]
フェデレートラーニング(FL)は、生データを共有せずに、分散デバイス間で協調的なモデルトレーニングを可能にする。
本稿では,クライアントの更新を認証するために,CGAN(Conditional Generative Adversarial Network)を利用してサーバで合成データを生成する,プライバシ保護型防衛フレームワークを提案する。
論文 参考訳(メタデータ) (2025-03-26T18:00:56Z) - FedPCA: Noise-Robust Fair Federated Learning via Performance-Capacity Analysis [39.424995330773264]
FedPCAは損失分散ペア上のガウス混合モデルを介して、誤ラベルされたクライアントを特定する。
クライアントの重みを調整し、信頼性のあるデータを選択的に利用することで、グローバルアグリゲーションとローカルトレーニングに公正性と堅牢性戦略を適用する。
論文 参考訳(メタデータ) (2025-03-13T17:18:18Z) - Towards Trustworthy Federated Learning [26.25193909843069]
本稿では,フェデレートラーニング(FL)における3つの重要な課題に対処するための包括的枠組みを開発する。
ビザンチン攻撃に対するシステムの防御を改善するため,両面のノーム・ベース・スクリーニング機構を開発した。
また、ローカルクライアントの生データが好奇心をそそる関係者によって推測されるのを防ぐために、差分プライバシーベースのスキームも採用しています。
論文 参考訳(メタデータ) (2025-03-05T17:25:20Z) - Enhancing LLM Reliability via Explicit Knowledge Boundary Modeling [48.15636223774418]
大規模言語モデル(LLM)は、不一致の自己認識に起因する幻覚の傾向にある。
本稿では,高速かつ低速な推論システムを統合し,信頼性とユーザビリティを調和させる明示的知識境界モデリングフレームワークを提案する。
論文 参考訳(メタデータ) (2025-03-04T03:16:02Z) - Noise-Adaptive Conformal Classification with Marginal Coverage [53.74125453366155]
本稿では,ランダムラベルノイズによる交換性からの偏差を効率的に処理できる適応型共形推論手法を提案する。
本手法は,合成および実データに対して,その有効性を示す広範囲な数値実験により検証する。
論文 参考訳(メタデータ) (2025-01-29T23:55:23Z) - Efficient and Robust Regularized Federated Recommendation [52.24782464815489]
推薦システム(RSRS)は、ユーザの好みとプライバシの両方に対処する。
通信効率を向上させるために,非一様勾配勾配勾配を取り入れた新しい手法を提案する。
RFRecFの強靭性は、多様なベースラインに比べて優れている。
論文 参考訳(メタデータ) (2024-11-03T12:10:20Z) - FedCert: Federated Accuracy Certification [8.34167718121698]
フェデレートラーニング(FL)は、機械学習モデルを分散的にトレーニングするための強力なパラダイムとして登場した。
従来の研究では、認定精度に基づいて、集中訓練におけるモデルの有効性を評価してきた。
本研究では,FLシステムのロバスト性を評価するためのFedCertという手法を提案する。
論文 参考訳(メタデータ) (2024-10-04T01:19:09Z) - Certifiably Byzantine-Robust Federated Conformal Prediction [49.23374238798428]
本稿では,悪意のあるクライアントに対する堅牢な共形予測を行う新しいフレームワークRob-FCPを提案する。
我々は、さまざまなビザンチン攻撃の下で、悪意のあるクライアントの多様な割合に対するRob-FCPの堅牢性を実証的に実証した。
論文 参考訳(メタデータ) (2024-06-04T04:43:30Z) - FedAA: A Reinforcement Learning Perspective on Adaptive Aggregation for Fair and Robust Federated Learning [5.622065847054885]
Federated Learning (FL)は、分散デバイス間でのプライバシ保護モデルトレーニングのための有望なアプローチとして登場した。
我々はtextbfAdaptive textbfAggregation を通じてクライアントのコントリビューションを最適化する textbfFedAA という新しい手法を導入し、悪意のあるクライアントに対するモデルロバスト性を高める。
論文 参考訳(メタデータ) (2024-02-08T10:22:12Z) - Secure and Verifiable Data Collaboration with Low-Cost Zero-Knowledge
Proofs [30.260427020479536]
本稿では,セキュアかつ検証可能なデータコラボレーションのための新しい高効率ソリューションRiseFLを提案する。
まず,ZKP生成と検証のコストを大幅に削減する確率論的整合性検査法を提案する。
第3に,ビザンチンのロバスト性を満たすハイブリッドなコミットメントスキームを設計し,性能を向上する。
論文 参考訳(メタデータ) (2023-11-26T14:19:46Z) - Privacy-preserving Federated Primal-dual Learning for Non-convex and Non-smooth Problems with Model Sparsification [51.04894019092156]
FL(Federated Learning)は,FLオーケストレーション(PS)の下でクライアント上でモデルをトレーニングする,急速に成長する領域として認識されている。
本稿では,非滑らかなFL問題に対して,新しい一次分離アルゴリズムを提案し,保証する。
その独特な洞察力のある性質とその分析も提示される。
論文 参考訳(メタデータ) (2023-10-30T14:15:47Z) - Binary Classification with Confidence Difference [100.08818204756093]
本稿では,信頼性差分法 (ConfDiff) という,弱教師付き二項分類問題について考察する。
本稿では,この問題に対処するためのリスク一貫性のあるアプローチを提案し,推定誤差が最適収束率と一致することを示す。
また,整合性や収束率も証明されたオーバーフィッティング問題を緩和するためのリスク補正手法も導入する。
論文 参考訳(メタデータ) (2023-10-09T11:44:50Z) - FedVal: Different good or different bad in federated learning [9.558549875692808]
フェデレート・ラーニング(FL)システムは悪意のあるアクターからの攻撃を受けやすい。
FLは、異なる人口集団の公正なパフォーマンスを保証するなど、グループの偏見に対処する上で、新たな課題を提起する。
このようなバイアスに対処するために使用される従来の方法は、FLシステムが持っていないデータへの集中的なアクセスを必要とする。
我々は、クライアントからの追加情報を必要としない堅牢性と公正性の両方に対して、新しいアプローチであるFedValを提案する。
論文 参考訳(メタデータ) (2023-06-06T22:11:13Z) - Reliable Federated Disentangling Network for Non-IID Domain Feature [62.73267904147804]
本稿では、RFedDisと呼ばれる新しい信頼性のあるフェデレーション・ディエンタングリング・ネットワークを提案する。
我々の知る限り、提案するRFedDisは、明らかな不確実性と特徴の混在に基づくFLアプローチを開発する最初の試みである。
提案するRFedDisは,他の最先端FL手法と比較して信頼性の高い優れた性能を提供する。
論文 参考訳(メタデータ) (2023-01-30T11:46:34Z) - Confidence-Calibrated Face and Kinship Verification [8.570969129199467]
検証モデルにより、類似度スコアを任意の顔対に対する信頼スコアに変換することができる効果的な信頼度尺度を導入する。
また,実装が容易で,既存の検証モデルにも容易に適用可能な,信頼性校正アプローチであるAngular Scaling(ASC)を提案する。
我々の知識を最大限に活用するために、我々の研究は、現代の顔と親族関係の検証タスクに対する、初めての包括的信頼度校正ソリューションを提示した。
論文 参考訳(メタデータ) (2022-10-25T10:43:46Z) - Adversarial Training with Rectified Rejection [114.83821848791206]
本稿では,信頼度(T-Con)を確実性オラクルとして利用し,信頼度を補正してT-Conを予測することを提案する。
軽度の条件下では、正当性(R-Con)拒絶器と信頼性(R-Con)拒絶器を結合して、不正に分類された入力と正しく分類された入力を区別できることを示す。
論文 参考訳(メタデータ) (2021-05-31T08:24:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。