論文の概要: Estimating Body Volume and Height Using 3D Data
- arxiv url: http://arxiv.org/abs/2410.02800v1
- Date: Wed, 18 Sep 2024 16:20:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-03 05:44:23.566295
- Title: Estimating Body Volume and Height Using 3D Data
- Title(参考訳): 3次元データを用いた体容積と高さの推定
- Authors: Vivek Ganesh Sonar, Muhammad Tanveer Jan, Mike Wells, Abhijit Pandya, Gabriela Engstrom, Richard Shih, Borko Furht,
- Abstract要約: 本稿では,3次元イメージング技術を用いた非侵襲的体重推定法を提案する。
RealSense D415カメラは、患者の高解像度深度マップをキャプチャするために使用される。
高さは、体上のキーポイント間の距離を特定することによって、3Dモデルから導かれる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate body weight estimation is critical in emergency medicine for proper dosing of weight-based medications, yet direct measurement is often impractical in urgent situations. This paper presents a non-invasive method for estimating body weight by calculating total body volume and height using 3D imaging technology. A RealSense D415 camera is employed to capture high-resolution depth maps of the patient, from which 3D models are generated. The Convex Hull Algorithm is then applied to calculate the total body volume, with enhanced accuracy achieved by segmenting the point cloud data into multiple sections and summing their individual volumes. The height is derived from the 3D model by identifying the distance between key points on the body. This combined approach provides an accurate estimate of body weight, improving the reliability of medical interventions where precise weight data is unavailable. The proposed method demonstrates significant potential to enhance patient safety and treatment outcomes in emergency settings.
- Abstract(参考訳): 正確な体重推定は、救急医療において、体重ベースの薬物を適切に服用するために重要であるが、緊急の状況では直接測定は実用的ではないことが多い。
本稿では,3次元イメージング技術を用いて体容積と身長を算出し,生体重量を非侵襲的に推定する方法を提案する。
RealSense D415カメラを使用して、患者の高解像度深度マップをキャプチャし、そこから3Dモデルを生成する。
コンベックスハルアルゴリズムは、点雲データを複数のセクションに分割し、個々のボリュームをまとめることで、精度を高めて、全体容積を計算する。
高さは、体上のキーポイント間の距離を特定することによって、3Dモデルから導かれる。
この組み合わせによるアプローチは、正確な体重推定を提供し、正確な体重データが利用できない医療介入の信頼性を向上させる。
本手法は,緊急時の患者の安全性と治療効果を高める重要な可能性を示すものである。
関連論文リスト
- Calib3D: Calibrating Model Preferences for Reliable 3D Scene Understanding [55.32861154245772]
Calib3Dは3Dシーン理解モデルの信頼性をベンチマークし精査する先駆的な試みである。
10種類の3Dデータセットにわたる28の最先端モデルを評価した。
本稿では,3次元モデルのキャリブレーション向上を目的とした,深度対応のスケーリング手法であるDeptSを紹介する。
論文 参考訳(メタデータ) (2024-03-25T17:59:59Z) - Binarized 3D Whole-body Human Mesh Recovery [104.13364878565737]
本研究では, 人体, 顔, 手の3次元パラメータを効率的に推定するために, 両立二重残差ネットワーク (BiDRN) を提案する。
BiDRNは、22.1%のパラメータと14.8%の操作しか使用せず、完全精度のHand4Wholeで同等のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2023-11-24T07:51:50Z) - Advancing Smart Malnutrition Monitoring: A Multi-Modal Learning Approach
for Vital Health Parameter Estimation [0.0]
本研究は, 画期的な, スケーラブルで, 堅牢な栄養失調モニタリングシステムを提案する。
身長、体重、その他の重要な健康パラメータを推定するために、個人の1つのフルボディ画像を使用する。
本モデルでは, 平均絶対誤差 (MAE) が4.7cm, 5.3kg, 平均誤差 (MAE) は5.3kgと推定される。
論文 参考訳(メタデータ) (2023-07-31T15:08:02Z) - Probabilistic 3D segmentation for aleatoric uncertainty quantification
in full 3D medical data [7.615431940103322]
正規化フローを付加した3次元確率的セグメンテーションフレームワークを開発した。
私たちは初めて、0.401の3D角形一般エネルギー距離(GED)と、高い0.468のハンガリー製の3D IoUを提示しました。
論文 参考訳(メタデータ) (2023-05-01T17:19:20Z) - Validated respiratory drug deposition predictions from 2D and 3D medical
images with statistical shape models and convolutional neural networks [47.187609203210705]
患者固有の沈着モデリングのための自動計算フレームワークを開発し,検証することを目的としている。
2次元胸部X線と3次元CT画像から3次元患者の呼吸動態を生成できる画像処理手法が提案されている。
論文 参考訳(メタデータ) (2023-03-02T07:47:07Z) - A Neural Anthropometer Learning from Body Dimensions Computed on Human
3D Meshes [0.0]
本稿では,3次元メッシュの左右腕長,肩幅,切削高さ(クロッチ高さ)を,医療・バーチャル・トライオン・距離調整への応用に焦点をあてて算出する手法を提案する。
一方、最近発表された手法を用いて計算された4つの追加の体次元を用いて、8つの体次元の集合を組み立て、これら次元を推定できる畳み込みニューラルネットワークであるニューラル・アントロポメータの監視信号として使用する。
論文 参考訳(メタデータ) (2021-10-06T12:56:05Z) - Comprehensive Validation of Automated Whole Body Skeletal Muscle,
Adipose Tissue, and Bone Segmentation from 3D CT images for Body Composition
Analysis: Towards Extended Body Composition [0.6176955945418618]
ディープラーニングのような強力な人工知能のツールは、3D画像全体を分割し、すべての内部解剖の正確な測定を生成することができるようになった。
これにより、これまで存在した深刻なボトルネック、すなわち手動セグメンテーションの必要性の克服が可能になる。
これらの測定は不可能であったため、フィールドを非常に小さく限られたサブセットに制限した。
論文 参考訳(メタデータ) (2021-06-01T17:30:45Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
CTスライスにおける普遍的病変検出のための3Dコンテキスト強化2D特徴を効率的に抽出するための修飾擬似3次元特徴ピラミッドネットワーク(MP3D FPN)を提案する。
新たな事前学習手法により,提案したMP3D FPNは,DeepLesionデータセット上での最先端検出性能を実現する。
提案された3Dプリトレーニングウェイトは、他の3D医療画像分析タスクのパフォーマンスを高めるために使用できる。
論文 参考訳(メタデータ) (2020-12-16T07:11:16Z) - Probabilistic 3D surface reconstruction from sparse MRI information [58.14653650521129]
スパース2次元MR画像データとアレータティック不確実性予測から3次元表面再構成を同時に行うための新しい確率論的深層学習手法を提案する。
本手法は,3つの準直交MR画像スライスから,限られたトレーニングセットから大きな表面メッシュを再構成することができる。
論文 参考訳(メタデータ) (2020-10-05T14:18:52Z) - Deep Volumetric Universal Lesion Detection using Light-Weight Pseudo 3D
Convolution and Surface Point Regression [23.916776570010285]
コンピュータ支援型病変/重要なフィンディング検出技術は、医療画像の核心にある。
そこで本研究では,(1) P3DC演算子を組み込んだ深層アンカーフリーワンステージVULDフレームワークを提案する。
3次元病変の空間範囲を効果的に抑圧する新しいSPR法は、その代表的キーポイントを病変表面にピンポイントすることで実現される。
論文 参考訳(メタデータ) (2020-08-30T19:42:06Z) - Anatomy-aware 3D Human Pose Estimation with Bone-based Pose
Decomposition [92.99291528676021]
3次元関節位置を直接回帰するのではなく,骨方向予測と骨長予測に分解する。
私たちのモチベーションは、人間の骨格の骨の長さが時間とともに一定であることにあります。
我々の完全なモデルは、Human3.6MとMPI-INF-3DHPデータセットにおいて、以前の最高の結果よりも優れています。
論文 参考訳(メタデータ) (2020-02-24T15:49:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。