Trust-informed Decision-Making Through An Uncertainty-Aware Stacked Neural Networks Framework: Case Study in COVID-19 Classification
- URL: http://arxiv.org/abs/2410.02805v1
- Date: Thu, 19 Sep 2024 04:20:12 GMT
- Title: Trust-informed Decision-Making Through An Uncertainty-Aware Stacked Neural Networks Framework: Case Study in COVID-19 Classification
- Authors: Hassan Gharoun, Mohammad Sadegh Khorshidi, Fang Chen, Amir H. Gandomi,
- Abstract summary: This study presents an uncertainty-aware stacked neural networks model for the reliable classification of COVID-19 from radiological images.
The model addresses the critical gap in uncertainty-aware modeling by focusing on accurately identifying confidently correct predictions.
The architecture integrates uncertainty quantification methods, including Monte Carlo dropout and ensemble techniques, to enhance predictive reliability.
- Score: 10.265080819932614
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study presents an uncertainty-aware stacked neural networks model for the reliable classification of COVID-19 from radiological images. The model addresses the critical gap in uncertainty-aware modeling by focusing on accurately identifying confidently correct predictions while alerting users to confidently incorrect and uncertain predictions, which can promote trust in automated systems. The architecture integrates uncertainty quantification methods, including Monte Carlo dropout and ensemble techniques, to enhance predictive reliability by assessing the certainty of diagnostic predictions. Within a two-tier model framework, the tier one model generates initial predictions and associated uncertainties, which the second tier model uses to produce a trust indicator alongside the diagnostic outcome. This dual-output model not only predicts COVID-19 cases but also provides a trust flag, indicating the reliability of each diagnosis and aiming to minimize the need for retesting and expert verification. The effectiveness of this approach is demonstrated through extensive experiments on the COVIDx CXR-4 dataset, showing a novel approach in identifying and handling confidently incorrect cases and uncertain cases, thus enhancing the trustworthiness of automated diagnostics in clinical settings.
Related papers
- Inadequacy of common stochastic neural networks for reliable clinical
decision support [0.4262974002462632]
Widespread adoption of AI for medical decision making is still hindered due to ethical and safety-related concerns.
Common deep learning approaches, however, have the tendency towards overconfidence under data shift.
This study investigates their actual reliability in clinical applications.
arXiv Detail & Related papers (2024-01-24T18:49:30Z) - Conservative Prediction via Data-Driven Confidence Minimization [70.93946578046003]
In safety-critical applications of machine learning, it is often desirable for a model to be conservative.
We propose the Data-Driven Confidence Minimization framework, which minimizes confidence on an uncertainty dataset.
arXiv Detail & Related papers (2023-06-08T07:05:36Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
We introduce DEviS, an easily implementable foundational model that seamlessly integrates into various medical image segmentation networks.
By leveraging subjective logic theory, we explicitly model probability and uncertainty for the problem of medical image segmentation.
DeviS incorporates an uncertainty-aware filtering module, which utilizes the metric of uncertainty-calibrated error to filter reliable data.
arXiv Detail & Related papers (2023-01-01T05:02:46Z) - Reliability-Aware Prediction via Uncertainty Learning for Person Image
Retrieval [51.83967175585896]
UAL aims at providing reliability-aware predictions by considering data uncertainty and model uncertainty simultaneously.
Data uncertainty captures the noise" inherent in the sample, while model uncertainty depicts the model's confidence in the sample's prediction.
arXiv Detail & Related papers (2022-10-24T17:53:20Z) - Improving Trustworthiness of AI Disease Severity Rating in Medical
Imaging with Ordinal Conformal Prediction Sets [0.7734726150561088]
A lack of statistically rigorous uncertainty quantification is a significant factor undermining trust in AI results.
Recent developments in distribution-free uncertainty quantification present practical solutions for these issues.
We demonstrate a technique for forming ordinal prediction sets that are guaranteed to contain the correct stenosis severity.
arXiv Detail & Related papers (2022-07-05T18:01:20Z) - Uncertainty-Informed Deep Learning Models Enable High-Confidence
Predictions for Digital Histopathology [40.96261204117952]
We train models to identify lung adenocarcinoma vs. squamous cell carcinoma and show that high-confidence predictions outperform predictions without UQ.
We show that UQ thresholding remains reliable in the setting of domain shift, with accurate high-confidence predictions of adenocarcinoma vs. squamous cell carcinoma for out-of-distribution, non-lung cancer cohorts.
arXiv Detail & Related papers (2022-04-09T17:35:37Z) - Uncertainty-Aware Training for Cardiac Resynchronisation Therapy
Response Prediction [3.090173647095682]
Quantifying uncertainty of a prediction is one way to provide such interpretability and promote trust.
We quantify the data (aleatoric) and model (epistemic) uncertainty of a DL model for Cardiac Resynchronisation Therapy response prediction from cardiac magnetic resonance images.
We perform a preliminary investigation of an uncertainty-aware loss function that can be used to retrain an existing DL image-based classification model to encourage confidence in correct predictions.
arXiv Detail & Related papers (2021-09-22T10:37:50Z) - Confidence Aware Neural Networks for Skin Cancer Detection [12.300911283520719]
We present three different methods for quantifying uncertainties for skin cancer detection from images.
The obtained results reveal that the predictive uncertainty estimation methods are capable of flagging risky and erroneous predictions.
We also demonstrate that ensemble approaches are more reliable in capturing uncertainties through inference.
arXiv Detail & Related papers (2021-07-19T19:21:57Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
Prediction credibility measures are fundamental in statistics and machine learning.
These measures should account for the wide variety of models used in practice.
The framework developed in this work expresses the credibility as a risk-fit trade-off.
arXiv Detail & Related papers (2020-11-24T19:52:38Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.