Inverse Design of Copolymers Including Stoichiometry and Chain Architecture
- URL: http://arxiv.org/abs/2410.02824v1
- Date: Mon, 30 Sep 2024 15:37:39 GMT
- Title: Inverse Design of Copolymers Including Stoichiometry and Chain Architecture
- Authors: Gabriel Vogel, Jana M. Weber,
- Abstract summary: Machine learning-guided molecular design is a promising approach to accelerate polymer discovery.
We develop a novel variational autoencoder architecture encoding a graph and decoding a string.
Our model learns a continuous, well organized latent space that enables de-novo generation of copolymer structures.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The demand for innovative synthetic polymers with improved properties is high, but their structural complexity and vast design space hinder rapid discovery. Machine learning-guided molecular design is a promising approach to accelerate polymer discovery. However, the scarcity of labeled polymer data and the complex hierarchical structure of synthetic polymers make generative design particularly challenging. We advance the current state-of-the-art approaches to generate not only repeating units, but monomer ensembles including their stoichiometry and chain architecture. We build upon a recent polymer representation that includes stoichiometries and chain architectures of monomer ensembles and develop a novel variational autoencoder (VAE) architecture encoding a graph and decoding a string. Using a semi-supervised setup, we enable the handling of partly labelled datasets which can be benefitial for domains with a small corpus of labelled data. Our model learns a continuous, well organized latent space (LS) that enables de-novo generation of copolymer structures including different monomer stoichiometries and chain architectures. In an inverse design case study, we demonstrate our model for in-silico discovery of novel conjugated copolymer photocatalysts for hydrogen production using optimization of the polymer's electron affinity and ionization potential in the latent space.
Related papers
- GraphXForm: Graph transformer for computer-aided molecular design with application to extraction [73.1842164721868]
We present GraphXForm, a decoder-only graph transformer architecture, which is pretrained on existing compounds and then fine-tuned.
We evaluate it on two solvent design tasks for liquid-liquid extraction, showing that it outperforms four state-of-the-art molecular design techniques.
arXiv Detail & Related papers (2024-11-03T19:45:15Z) - Molecular topological deep learning for polymer property prediction [18.602659324026934]
We develop molecular topological deep learning (Mol-TDL) for polymer property analysis.
Mol-TDL incorporates both high-order interactions and multiscale properties into topological deep learning architecture.
arXiv Detail & Related papers (2024-10-07T05:44:02Z) - Scalable Diffusion for Materials Generation [99.71001883652211]
We develop a unified crystal representation that can represent any crystal structure (UniMat)
UniMat can generate high fidelity crystal structures from larger and more complex chemical systems.
We propose additional metrics for evaluating generative models of materials.
arXiv Detail & Related papers (2023-10-18T15:49:39Z) - An Equivariant Generative Framework for Molecular Graph-Structure
Co-Design [54.92529253182004]
We present MolCode, a machine learning-based generative framework for underlineMolecular graph-structure underlineCo-design.
In MolCode, 3D geometric information empowers the molecular 2D graph generation, which in turn helps guide the prediction of molecular 3D structure.
Our investigation reveals that the 2D topology and 3D geometry contain intrinsically complementary information in molecule design.
arXiv Detail & Related papers (2023-04-12T13:34:22Z) - State-specific protein-ligand complex structure prediction with a
multi-scale deep generative model [68.28309982199902]
We present NeuralPLexer, a computational approach that can directly predict protein-ligand complex structures.
Our study suggests that a data-driven approach can capture the structural cooperativity between proteins and small molecules, showing promise in accelerating the design of enzymes, drug molecules, and beyond.
arXiv Detail & Related papers (2022-09-30T01:46:38Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
We propose a new retrieval-based framework for controllable molecule generation.
We use a small set of molecules to steer the pre-trained generative model towards synthesizing molecules that satisfy the given design criteria.
Our approach is agnostic to the choice of generative models and requires no task-specific fine-tuning.
arXiv Detail & Related papers (2022-08-23T17:01:16Z) - A graph representation of molecular ensembles for polymer property
prediction [3.032184156362992]
In contrast to organic molecules, polymers are often not well-defined single structures but an ensemble of similar molecules.
We introduce a graph representation of molecular ensembles and an associated graph neural network architecture that is tailored to polymer property prediction.
arXiv Detail & Related papers (2022-05-17T20:31:43Z) - Geometric Transformer for End-to-End Molecule Properties Prediction [92.28929858529679]
We introduce a Transformer-based architecture for molecule property prediction, which is able to capture the geometry of the molecule.
We modify the classical positional encoder by an initial encoding of the molecule geometry, as well as a learned gated self-attention mechanism.
arXiv Detail & Related papers (2021-10-26T14:14:40Z) - Copolymer Informatics with Multi-Task Deep Neural Networks [0.0]
We address the property prediction challenge for copolymers, extending the polymer informatics framework beyond homopolymers.
A large data set containing over 18,000 data points of glass transition, melting, and degradation temperature of homopolymers and copolymers of up to two monomers is used.
The developed models are accurate, fast, flexible, and scalable to more copolymer properties when suitable data become available.
arXiv Detail & Related papers (2021-03-25T23:28:20Z) - Message Passing Networks for Molecules with Tetrahedral Chirality [8.391459650489123]
We develop two custom aggregation functions for message passing neural networks to learn properties of molecules with tetrahedral chirality.
Results show modest improvements over a baseline sum aggregator, highlighting opportunities for further architecture development.
arXiv Detail & Related papers (2020-11-24T03:03:09Z) - Deep Generative Modeling for Mechanistic-based Learning and Design of
Metamaterial Systems [20.659457956055366]
We propose a novel data-driven metamaterial design framework based on deep generative modeling.
We show in this study that the latent space of VAE provides a distance metric to measure shape similarity.
We demonstrate our framework by designing both functionally graded and heterogeneous metamaterial systems.
arXiv Detail & Related papers (2020-06-27T03:56:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.