Molecular topological deep learning for polymer property prediction
- URL: http://arxiv.org/abs/2410.04765v1
- Date: Mon, 7 Oct 2024 05:44:02 GMT
- Title: Molecular topological deep learning for polymer property prediction
- Authors: Cong Shen, Yipeng Zhang, Fei Han, Kelin Xia,
- Abstract summary: We develop molecular topological deep learning (Mol-TDL) for polymer property analysis.
Mol-TDL incorporates both high-order interactions and multiscale properties into topological deep learning architecture.
- Score: 18.602659324026934
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate and efficient prediction of polymer properties is of key importance for polymer design. Traditional experimental tools and density function theory (DFT)-based simulations for polymer property evaluation, are both expensive and time-consuming. Recently, a gigantic amount of graph-based molecular models have emerged and demonstrated huge potential in molecular data analysis. Even with the great progresses, these models tend to ignore the high-order and mutliscale information within the data. In this paper, we develop molecular topological deep learning (Mol-TDL) for polymer property analysis. Our Mol-TDL incorporates both high-order interactions and multiscale properties into topological deep learning architecture. The key idea is to represent polymer molecules as a series of simplicial complices at different scales and build up simplical neural networks accordingly. The aggregated information from different scales provides a more accurate prediction of polymer molecular properties.
Related papers
- Atomic and Subgraph-aware Bilateral Aggregation for Molecular
Representation Learning [57.670845619155195]
We introduce a new model for molecular representation learning called the Atomic and Subgraph-aware Bilateral Aggregation (ASBA)
ASBA addresses the limitations of previous atom-wise and subgraph-wise models by incorporating both types of information.
Our method offers a more comprehensive way to learn representations for molecular property prediction and has broad potential in drug and material discovery applications.
arXiv Detail & Related papers (2023-05-22T00:56:00Z) - Multiresolution Graph Transformers and Wavelet Positional Encoding for
Learning Hierarchical Structures [6.875312133832078]
We propose Multiresolution Graph Transformers (MGT), the first graph transformer architecture that can learn to represent large molecules at multiple scales.
MGT can learn to produce representations for the atoms and group them into meaningful functional groups or repeating units.
Our proposed model achieves results on two macromolecule datasets consisting of polymers and peptides, and one drug-like molecule dataset.
arXiv Detail & Related papers (2023-02-17T01:32:44Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
We develop molecular embeddings that encode complex molecular characteristics to improve the performance of few-shot molecular property prediction.
Our approach leverages large amounts of synthetic data, namely the results of molecular docking calculations.
On multiple molecular property prediction benchmarks, training from the embedding space substantially improves Multi-Task, MAML, and Prototypical Network few-shot learning performance.
arXiv Detail & Related papers (2023-02-04T01:32:40Z) - TransPolymer: a Transformer-based language model for polymer property
predictions [9.04563945965023]
TransPolymer is a Transformer-based language model for polymer property prediction.
Our proposed polymer tokenizer with chemical awareness enables learning representations from polymer sequences.
arXiv Detail & Related papers (2022-09-03T01:29:59Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
Graph neural networks (GNNs) are a novel machine learning method that directly work on the molecular graph.
GNNs allow to learn properties in an end-to-end fashion, thereby avoiding the need for informative descriptors.
We describe the fundamentals of GNNs and demonstrate the application of GNNs via two examples for molecular property prediction.
arXiv Detail & Related papers (2022-07-25T11:30:44Z) - Representing Polymers as Periodic Graphs with Learned Descriptors for
Accurate Polymer Property Predictions [16.468017785818198]
We develop a periodic polymer graph representation that consistently outperforms hand-designed representations.
We also demonstrate how combining polymer graph representations with message-passing neural network architectures can automatically extract meaningful polymer features.
arXiv Detail & Related papers (2022-05-27T04:14:12Z) - A graph representation of molecular ensembles for polymer property
prediction [3.032184156362992]
In contrast to organic molecules, polymers are often not well-defined single structures but an ensemble of similar molecules.
We introduce a graph representation of molecular ensembles and an associated graph neural network architecture that is tailored to polymer property prediction.
arXiv Detail & Related papers (2022-05-17T20:31:43Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
Molecular dynamics (MD) simulations allow atomistic insights into chemical and biological processes.
Recently, machine learned force fields (MLFFs) emerged as an alternative means to execute MD simulations.
This work proposes a general approach to constructing accurate MLFFs for large-scale molecular simulations.
arXiv Detail & Related papers (2022-05-17T13:08:28Z) - BIGDML: Towards Exact Machine Learning Force Fields for Materials [55.944221055171276]
Machine-learning force fields (MLFF) should be accurate, computationally and data efficient, and applicable to molecules, materials, and interfaces thereof.
Here, we introduce the Bravais-Inspired Gradient-Domain Machine Learning approach and demonstrate its ability to construct reliable force fields using a training set with just 10-200 atoms.
arXiv Detail & Related papers (2021-06-08T10:14:57Z) - Copolymer Informatics with Multi-Task Deep Neural Networks [0.0]
We address the property prediction challenge for copolymers, extending the polymer informatics framework beyond homopolymers.
A large data set containing over 18,000 data points of glass transition, melting, and degradation temperature of homopolymers and copolymers of up to two monomers is used.
The developed models are accurate, fast, flexible, and scalable to more copolymer properties when suitable data become available.
arXiv Detail & Related papers (2021-03-25T23:28:20Z) - Few-Shot Graph Learning for Molecular Property Prediction [46.60746023179724]
We propose Meta-MGNN, a novel model for few-shot molecular property prediction.
To exploit unlabeled molecular information, Meta-MGNN further incorporates molecular structure, attribute based self-supervised modules and self-attentive task weights.
Extensive experiments on two public multi-property datasets demonstrate that Meta-MGNN outperforms a variety of state-of-the-art methods.
arXiv Detail & Related papers (2021-02-16T01:55:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.