Copolymer Informatics with Multi-Task Deep Neural Networks
- URL: http://arxiv.org/abs/2103.14174v1
- Date: Thu, 25 Mar 2021 23:28:20 GMT
- Title: Copolymer Informatics with Multi-Task Deep Neural Networks
- Authors: Christopher Kuenneth, William Schertzer, Rampi Ramprasad
- Abstract summary: We address the property prediction challenge for copolymers, extending the polymer informatics framework beyond homopolymers.
A large data set containing over 18,000 data points of glass transition, melting, and degradation temperature of homopolymers and copolymers of up to two monomers is used.
The developed models are accurate, fast, flexible, and scalable to more copolymer properties when suitable data become available.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Polymer informatics tools have been recently gaining ground to efficiently
and effectively develop, design, and discover new polymers that meet specific
application needs. So far, however, these data-driven efforts have largely
focused on homopolymers. Here, we address the property prediction challenge for
copolymers, extending the polymer informatics framework beyond homopolymers.
Advanced polymer fingerprinting and deep-learning schemes that incorporate
multi-task learning and meta-learning are proposed. A large data set containing
over 18,000 data points of glass transition, melting, and degradation
temperature of homopolymers and copolymers of up to two monomers is used to
demonstrate the copolymer prediction efficacy. The developed models are
accurate, fast, flexible, and scalable to more copolymer properties when
suitable data become available.
Related papers
- Molecular topological deep learning for polymer property prediction [18.602659324026934]
We develop molecular topological deep learning (Mol-TDL) for polymer property analysis.
Mol-TDL incorporates both high-order interactions and multiscale properties into topological deep learning architecture.
arXiv Detail & Related papers (2024-10-07T05:44:02Z) - MMPolymer: A Multimodal Multitask Pretraining Framework for Polymer Property Prediction [24.975491375575224]
MMPolymer is a novel multitask pretraining framework incorporating polymer 1D sequential and 3D structural information.
MMPolymer achieves state-of-the-art performance in downstream property prediction tasks.
arXiv Detail & Related papers (2024-06-07T08:19:59Z) - Instruction Multi-Constraint Molecular Generation Using a Teacher-Student Large Language Model [49.64512917330373]
We introduce a multi-constraint molecular generation large language model, TSMMG, akin to a student.
To train TSMMG, we construct a large set of text-molecule pairs by extracting molecular knowledge from these 'teachers'
We experimentally show that TSMMG remarkably performs in generating molecules meeting complex, natural language-described property requirements.
arXiv Detail & Related papers (2024-03-20T02:15:55Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
We develop molecular embeddings that encode complex molecular characteristics to improve the performance of few-shot molecular property prediction.
Our approach leverages large amounts of synthetic data, namely the results of molecular docking calculations.
On multiple molecular property prediction benchmarks, training from the embedding space substantially improves Multi-Task, MAML, and Prototypical Network few-shot learning performance.
arXiv Detail & Related papers (2023-02-04T01:32:40Z) - Photonic Quantum Computing For Polymer Classification [62.997667081978825]
Two polymer classes visual (VIS) and near-infrared (NIR) are defined based on the size of the polymer gaps.
We present a hybrid classical-quantum approach to the binary classification of polymer structures.
arXiv Detail & Related papers (2022-11-22T11:59:52Z) - Representing Polymers as Periodic Graphs with Learned Descriptors for
Accurate Polymer Property Predictions [16.468017785818198]
We develop a periodic polymer graph representation that consistently outperforms hand-designed representations.
We also demonstrate how combining polymer graph representations with message-passing neural network architectures can automatically extract meaningful polymer features.
arXiv Detail & Related papers (2022-05-27T04:14:12Z) - A graph representation of molecular ensembles for polymer property
prediction [3.032184156362992]
In contrast to organic molecules, polymers are often not well-defined single structures but an ensemble of similar molecules.
We introduce a graph representation of molecular ensembles and an associated graph neural network architecture that is tailored to polymer property prediction.
arXiv Detail & Related papers (2022-05-17T20:31:43Z) - BIGDML: Towards Exact Machine Learning Force Fields for Materials [55.944221055171276]
Machine-learning force fields (MLFF) should be accurate, computationally and data efficient, and applicable to molecules, materials, and interfaces thereof.
Here, we introduce the Bravais-Inspired Gradient-Domain Machine Learning approach and demonstrate its ability to construct reliable force fields using a training set with just 10-200 atoms.
arXiv Detail & Related papers (2021-06-08T10:14:57Z) - Few-Shot Graph Learning for Molecular Property Prediction [46.60746023179724]
We propose Meta-MGNN, a novel model for few-shot molecular property prediction.
To exploit unlabeled molecular information, Meta-MGNN further incorporates molecular structure, attribute based self-supervised modules and self-attentive task weights.
Extensive experiments on two public multi-property datasets demonstrate that Meta-MGNN outperforms a variety of state-of-the-art methods.
arXiv Detail & Related papers (2021-02-16T01:55:34Z) - Polymers for Extreme Conditions Designed Using Syntax-Directed
Variational Autoencoders [53.34780987686359]
Machine learning tools are now commonly employed to virtually screen material candidates with desired properties.
This approach is inefficient, and severely constrained by the candidates that human imagination can conceive.
We utilize syntax-directed variational autoencoders (VAE) in tandem with Gaussian process regression (GPR) models to discover polymers expected to be robust under three extreme conditions.
arXiv Detail & Related papers (2020-11-04T21:36:59Z) - Polymer Informatics: Current Status and Critical Next Steps [1.3238373064156097]
Surrogate models are trained on available polymer data for instant property prediction.
Data-driven strategies to tackle unique challenges resulting from the extraordinary chemical and physical diversity of polymers at small and large scales are being explored.
Methods to solve inverse problems, wherein polymer recommendations are made using advanced AI algorithms that meet application targets, are being investigated.
arXiv Detail & Related papers (2020-11-01T14:17:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.