Reconstructing Galaxy Cluster Mass Maps using Score-based Generative Modeling
- URL: http://arxiv.org/abs/2410.02857v1
- Date: Thu, 3 Oct 2024 18:00:03 GMT
- Title: Reconstructing Galaxy Cluster Mass Maps using Score-based Generative Modeling
- Authors: Alan Hsu, Matthew Ho, Joyce Lin, Carleen Markey, Michelle Ntampaka, Hy Trac, Barnabás Póczos,
- Abstract summary: We present a novel approach to reconstruct gas and dark matter projected density maps of galaxy clusters using score-based generative modeling.
Our diffusion model takes in mock SZ and X-ray images as conditional observations, and generates realizations of corresponding gas and dark matter maps by sampling from a learned data posterior.
- Score: 9.386611764730791
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a novel approach to reconstruct gas and dark matter projected density maps of galaxy clusters using score-based generative modeling. Our diffusion model takes in mock SZ and X-ray images as conditional observations, and generates realizations of corresponding gas and dark matter maps by sampling from a learned data posterior. We train and validate the performance of our model by using mock data from a hydrodynamical cosmological simulation. The model accurately reconstructs both the mean and spread of the radial density profiles in the spatial domain to within 5\%, indicating that the model is able to distinguish between clusters of different sizes. In the spectral domain, the model achieves close-to-unity values for the bias and cross-correlation coefficients, indicating that the model can accurately probe cluster structures on both large and small scales. Our experiments demonstrate the ability of score models to learn a strong, nonlinear, and unbiased mapping between input observables and fundamental density distributions of galaxy clusters. These diffusion models can be further fine-tuned and generalized to not only take in additional observables as inputs, but also real observations and predict unknown density distributions of galaxy clusters.
Related papers
- Flow-Based Generative Emulation of Grids of Stellar Evolutionary Models [4.713280433864737]
We present a flow-based generative approach to emulate grids of stellar evolutionary models.
We demonstrate their ability to emulate a variety of evolutionary tracks and isochrones across a continuous range of input parameters.
arXiv Detail & Related papers (2024-07-12T16:54:17Z) - Empirical Density Estimation based on Spline Quasi-Interpolation with
applications to Copulas clustering modeling [0.0]
Density estimation is a fundamental technique employed in various fields to model and to understand the underlying distribution of data.
In this paper we propose the mono-variate approximation of the density using quasi-interpolation.
The presented algorithm is validated on artificial and real datasets.
arXiv Detail & Related papers (2024-02-18T11:49:38Z) - Geometric Neural Diffusion Processes [55.891428654434634]
We extend the framework of diffusion models to incorporate a series of geometric priors in infinite-dimension modelling.
We show that with these conditions, the generative functional model admits the same symmetry.
arXiv Detail & Related papers (2023-07-11T16:51:38Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
Deep generative models have demonstrated successful applications in learning non-linear data distributions through a number of latent variables.
The nonlinearity of the generator implies that the latent space shows an unsatisfactory projection of the data space, which results in poor representation learning.
We show that geodesics and accurate computation can substantially improve the performance of deep generative models.
arXiv Detail & Related papers (2023-04-03T13:13:19Z) - Diffusion Models are Minimax Optimal Distribution Estimators [49.47503258639454]
We provide the first rigorous analysis on approximation and generalization abilities of diffusion modeling.
We show that when the true density function belongs to the Besov space and the empirical score matching loss is properly minimized, the generated data distribution achieves the nearly minimax optimal estimation rates.
arXiv Detail & Related papers (2023-03-03T11:31:55Z) - Score Approximation, Estimation and Distribution Recovery of Diffusion
Models on Low-Dimensional Data [68.62134204367668]
This paper studies score approximation, estimation, and distribution recovery of diffusion models, when data are supported on an unknown low-dimensional linear subspace.
We show that with a properly chosen neural network architecture, the score function can be both accurately approximated and efficiently estimated.
The generated distribution based on the estimated score function captures the data geometric structures and converges to a close vicinity of the data distribution.
arXiv Detail & Related papers (2023-02-14T17:02:35Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
We extend diffusion models to discrete variables by introducing a Markov jump process where the reverse process denoises via a continuous-time Markov chain.
We show that an unbiased estimator can be obtained via simple matching the conditional marginal distributions.
We demonstrate the effectiveness of the proposed method on a set of synthetic and real-world music and image benchmarks.
arXiv Detail & Related papers (2022-11-30T05:33:29Z) - Density-Based Clustering with Kernel Diffusion [59.4179549482505]
A naive density corresponding to the indicator function of a unit $d$-dimensional Euclidean ball is commonly used in density-based clustering algorithms.
We propose a new kernel diffusion density function, which is adaptive to data of varying local distributional characteristics and smoothness.
arXiv Detail & Related papers (2021-10-11T09:00:33Z) - Learning to discover: expressive Gaussian mixture models for
multi-dimensional simulation and parameter inference in the physical sciences [0.0]
We show that density models describing multiple observables may be created using an auto-regressive Gaussian mixture model.
The model is designed to capture how observable spectra are deformed by hypothesis variations.
It may be used as a statistical model for scientific discovery in interpreting experimental observations.
arXiv Detail & Related papers (2021-08-25T21:27:29Z) - Isometric Gaussian Process Latent Variable Model for Dissimilarity Data [0.0]
We present a probabilistic model where the latent variable respects both the distances and the topology of the modeled data.
The model is inferred by variational inference based on observations of pairwise distances.
arXiv Detail & Related papers (2020-06-21T08:56:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.