Quadratic Gating Functions in Mixture of Experts: A Statistical Insight
- URL: http://arxiv.org/abs/2410.11222v2
- Date: Wed, 16 Oct 2024 01:30:15 GMT
- Title: Quadratic Gating Functions in Mixture of Experts: A Statistical Insight
- Authors: Pedram Akbarian, Huy Nguyen, Xing Han, Nhat Ho,
- Abstract summary: Mixture of Experts (MoE) models are highly effective in scaling model capacity while preserving computational efficiency.
We establish a novel connection between MoE frameworks and attention mechanisms, demonstrating how quadratic gating can serve as a more expressive and efficient alternative.
- Score: 28.17124843417577
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mixture of Experts (MoE) models are highly effective in scaling model capacity while preserving computational efficiency, with the gating network, or router, playing a central role by directing inputs to the appropriate experts. In this paper, we establish a novel connection between MoE frameworks and attention mechanisms, demonstrating how quadratic gating can serve as a more expressive and efficient alternative. Motivated by this insight, we explore the implementation of quadratic gating within MoE models, identifying a connection between the self-attention mechanism and the quadratic gating. We conduct a comprehensive theoretical analysis of the quadratic softmax gating MoE framework, showing improved sample efficiency in expert and parameter estimation. Our analysis provides key insights into optimal designs for quadratic gating and expert functions, further elucidating the principles behind widely used attention mechanisms. Through extensive evaluations, we demonstrate that the quadratic gating MoE outperforms the traditional linear gating MoE. Moreover, our theoretical insights have guided the development of a novel attention mechanism, which we validated through extensive experiments. The results demonstrate its favorable performance over conventional models across various tasks.
Related papers
- Beyond Standard MoE: Mixture of Latent Experts for Resource-Efficient Language Models [10.623996218106564]
We introduce a novel parameterization methodology that facilitates the mapping of specific experts into a shared latent space.
All expert operations are systematically decomposed into two principal components: a shared projection into a lower-dimensional latent space, followed by expert-specific transformations.
This factorized approach substantially diminishes parameter count and computational requirements.
arXiv Detail & Related papers (2025-03-29T14:35:34Z) - ExpertRAG: Efficient RAG with Mixture of Experts -- Optimizing Context Retrieval for Adaptive LLM Responses [0.0]
ExpertRAG is a novel theoretical framework that integrates Mixture-of-Experts (MoE) architectures with Retrieval Augmented Generation (RAG)
We propose a dynamic retrieval gating mechanism coupled with expert routing, enabling the model to selectively consult an external knowledge store or rely on specialized internal experts.
We derive formulae to quantify the expected computational cost savings from selective retrieval and the capacity gains from sparse expert utilization.
arXiv Detail & Related papers (2025-03-23T17:26:23Z) - Convergence Rates for Softmax Gating Mixture of Experts [78.3687645289918]
Mixture of experts (MoE) has emerged as an effective framework to advance the efficiency and scalability of machine learning models.
Central to the success of MoE is an adaptive softmax gating mechanism which takes responsibility for determining the relevance of each expert to a given input and then dynamically assigning experts their respective weights.
We perform a convergence analysis of parameter estimation and expert estimation under the MoE equipped with the standard softmax gating or its variants, including a dense-to-sparse gating and a hierarchical softmax gating.
arXiv Detail & Related papers (2025-03-05T06:11:24Z) - Learning Mask Invariant Mutual Information for Masked Image Modeling [35.63719638508299]
Maskedencodes (MAEs) represent a prominent self-supervised learning paradigm in computer vision.
Recent studies have attempted to elucidate the functioning of MAEs through contrastive learning and feature representation analysis.
We propose a new perspective for understanding MAEs by leveraging the information bottleneck principle in information theory.
arXiv Detail & Related papers (2025-02-27T03:19:05Z) - Joint MoE Scaling Laws: Mixture of Experts Can Be Memory Efficient [4.34286535607654]
We present joint scaling laws for dense and MoE models, incorporating key factors such as the number of active parameters, dataset size, and the number of experts.
Surprisingly, we show that MoE models can be more memory-efficient than dense models, contradicting conventional wisdom.
arXiv Detail & Related papers (2025-02-07T18:55:38Z) - A Survey on Inference Optimization Techniques for Mixture of Experts Models [50.40325411764262]
Large-scale Mixture of Experts (MoE) models offer enhanced model capacity and computational efficiency through conditional computation.
deploying and running inference on these models presents significant challenges in computational resources, latency, and energy efficiency.
This survey analyzes optimization techniques for MoE models across the entire system stack.
arXiv Detail & Related papers (2024-12-18T14:11:15Z) - On Expert Estimation in Hierarchical Mixture of Experts: Beyond Softmax Gating Functions [29.130355774088205]
Hierarchical Mixture of Experts (HMoE) excels at handling complex inputs and improving performance on targeted tasks.
We theoretically demonstrate that applying tailored gating functions to each expert group allows HMoE to achieve robust results.
This includes large-scale multimodal tasks, image classification, and latent domain discovery and prediction tasks, where our modified HMoE models show great performance improvements.
arXiv Detail & Related papers (2024-10-03T19:28:52Z) - Diversifying the Expert Knowledge for Task-Agnostic Pruning in Sparse Mixture-of-Experts [75.85448576746373]
We propose a method of grouping and pruning similar experts to improve the model's parameter efficiency.
We validate the effectiveness of our method by pruning three state-of-the-art MoE architectures.
The evaluation shows that our method outperforms other model pruning methods on a range of natural language tasks.
arXiv Detail & Related papers (2024-07-12T17:25:02Z) - Intuition-aware Mixture-of-Rank-1-Experts for Parameter Efficient Finetuning [50.73666458313015]
Large Language Models (LLMs) have demonstrated significant potential in performing multiple tasks in multimedia applications.
MoE has been emerged as a promising solution with its sparse architecture for effective task decoupling.
Intuition-MoR1E achieves superior efficiency and 2.15% overall accuracy improvement across 14 public datasets.
arXiv Detail & Related papers (2024-04-13T12:14:58Z) - Enhancing Fairness and Performance in Machine Learning Models: A Multi-Task Learning Approach with Monte-Carlo Dropout and Pareto Optimality [1.5498930424110338]
This study introduces an approach to mitigate bias in machine learning by leveraging model uncertainty.
Our approach utilizes a multi-task learning (MTL) framework combined with Monte Carlo (MC) Dropout to assess and mitigate uncertainty in predictions related to protected labels.
arXiv Detail & Related papers (2024-04-12T04:17:50Z) - SEER-MoE: Sparse Expert Efficiency through Regularization for Mixture-of-Experts [49.01990048827639]
We introduce SEER-MoE, a framework for reducing both the memory footprint and compute requirements of pre-trained MoE models.
The first stage involves pruning the total number of experts using a heavy-hitters counting guidance, while the second stage employs a regularization-based fine-tuning strategy to recover accuracy loss.
Our empirical studies demonstrate the effectiveness of our method, resulting in a sparse MoEs model optimized for inference efficiency with minimal accuracy trade-offs.
arXiv Detail & Related papers (2024-04-07T22:13:43Z) - On Least Square Estimation in Softmax Gating Mixture of Experts [78.3687645289918]
We investigate the performance of the least squares estimators (LSE) under a deterministic MoE model.
We establish a condition called strong identifiability to characterize the convergence behavior of various types of expert functions.
Our findings have important practical implications for expert selection.
arXiv Detail & Related papers (2024-02-05T12:31:18Z) - Diversifying the Mixture-of-Experts Representation for Language Models with Orthogonal Optimizer [59.43462055143123]
The Mixture of Experts (MoE) has emerged as a highly successful technique in deep learning.
In this study, we shed light on the homogeneous representation problem, wherein experts in the MoE fail to specialize and lack diversity.
We propose an alternating training strategy that encourages each expert to update in a direction to the subspace spanned by other experts.
arXiv Detail & Related papers (2023-10-15T07:20:28Z) - Pessimism meets VCG: Learning Dynamic Mechanism Design via Offline
Reinforcement Learning [114.36124979578896]
We design a dynamic mechanism using offline reinforcement learning algorithms.
Our algorithm is based on the pessimism principle and only requires a mild assumption on the coverage of the offline data set.
arXiv Detail & Related papers (2022-05-05T05:44:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.