Comparison of Autoencoder Encodings for ECG Representation in Downstream Prediction Tasks
- URL: http://arxiv.org/abs/2410.02937v2
- Date: Tue, 29 Oct 2024 20:12:08 GMT
- Title: Comparison of Autoencoder Encodings for ECG Representation in Downstream Prediction Tasks
- Authors: Christopher J. Harvey, Sumaiya Shomaji, Zijun Yao, Amit Noheria,
- Abstract summary: We introduce three novel Variational Autoencoder (VAE) variants: Autoencoder (SAE), Annealed beta-VAE (Abeta-VAE), and cyclical beta-VAE (Cbeta-VAE)
The Abeta-VAE achieved superior signal reconstruction, reducing the mean absolute error (MAE) to 15.7 plus-minus 3.2 microvolts, which is at the level of signal noise.
Our findings demonstrate that these VAE encodings are not only effective in simplifying ECG data but also provide a practical solution for applying deep learning in contexts with limited-scale labeled training data
- Score: 2.2616169634370076
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The electrocardiogram (ECG) is an inexpensive and widely available tool for cardiovascular assessment. Despite its standardized format and small file size, the high complexity and inter-individual variability of ECG signals (typically a 60,000-size vector) make it challenging to use in deep learning models, especially when only small datasets are available. This study addresses these challenges by exploring feature generation methods from representative beat ECGs, focusing on Principal Component Analysis (PCA) and Autoencoders to reduce data complexity. We introduce three novel Variational Autoencoder (VAE) variants: Stochastic Autoencoder (SAE), Annealed beta-VAE (Abeta-VAE), and cyclical beta-VAE (Cbeta-VAE), and compare their effectiveness in maintaining signal fidelity and enhancing downstream prediction tasks. The Abeta-VAE achieved superior signal reconstruction, reducing the mean absolute error (MAE) to 15.7 plus-minus 3.2 microvolts, which is at the level of signal noise. Moreover, the SAE encodings, when combined with ECG summary features, improved the prediction of reduced Left Ventricular Ejection Fraction (LVEF), achieving an area under the receiver operating characteristic curve (AUROC) of 0.901. This performance nearly matches the 0.910 AUROC of state-of-the-art CNN models but requires significantly less data and computational resources. Our findings demonstrate that these VAE encodings are not only effective in simplifying ECG data but also provide a practical solution for applying deep learning in contexts with limited-scale labeled training data.
Related papers
- EKGNet: A 10.96{\mu}W Fully Analog Neural Network for Intra-Patient
Arrhythmia Classification [79.7946379395238]
We present an integrated approach by combining analog computing and deep learning for electrocardiogram (ECG) arrhythmia classification.
We propose EKGNet, a hardware-efficient and fully analog arrhythmia classification architecture that archives high accuracy with low power consumption.
arXiv Detail & Related papers (2023-10-24T02:37:49Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment.
Current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images.
This paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input.
arXiv Detail & Related papers (2023-09-07T13:43:46Z) - Classification and Self-Supervised Regression of Arrhythmic ECG Signals
Using Convolutional Neural Networks [13.025714736073489]
We propose a deep neural network model capable of solving regression and classification tasks.
We tested the model on the MIT-BIH Arrhythmia database.
arXiv Detail & Related papers (2022-10-25T18:11:13Z) - A Personalized Zero-Shot ECG Arrhythmia Monitoring System: From Sparse Representation Based Domain Adaption to Energy Efficient Abnormal Beat Detection for Practical ECG Surveillance [17.29714304835742]
This paper proposes a low-cost and highly accurate ECG-monitoring system intended for personalized early arrhythmia detection for wearable mobile sensors.
In a real-world scenario where the personalized algorithm is embedded in a wearable device, such training data is not available for healthy people with no cardiac disorder history.
We introduce a sparse representation-based domain adaptation technique in order to project other existing users' abnormal and normal signals onto the new user's signal space.
This approach for zero-shot arrhythmia detection achieves an average accuracy level of 98.2% and an F1-Score of 92.8%.
arXiv Detail & Related papers (2022-07-14T17:40:05Z) - The KFIoU Loss for Rotated Object Detection [115.334070064346]
In this paper, we argue that one effective alternative is to devise an approximate loss who can achieve trend-level alignment with SkewIoU loss.
Specifically, we model the objects as Gaussian distribution and adopt Kalman filter to inherently mimic the mechanism of SkewIoU.
The resulting new loss called KFIoU is easier to implement and works better compared with exact SkewIoU.
arXiv Detail & Related papers (2022-01-29T10:54:57Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
Existing databases for ECG delineation are small, being insufficient in size and in the array of pathological conditions they represent.
This article delves has two main contributions. First, a pseudo-synthetic data generation algorithm was developed, based in probabilistically composing ECG traces given "pools" of fundamental segments, as cropped from the original databases, and a set of rules for their arrangement into coherent synthetic traces.
Second, two novel segmentation-based loss functions have been developed, which attempt at enforcing the prediction of an exact number of independent structures and at producing closer segmentation boundaries by focusing on a reduced number of samples.
arXiv Detail & Related papers (2021-11-25T10:11:41Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - Robust R-Peak Detection in Low-Quality Holter ECGs using 1D
Convolutional Neural Network [20.198563425074372]
This paper presents a generic and robust system for R-peak detection in Holter ECG signals.
A novel implementation of the 1D Convolutional Neural Network (CNN) is used integrated with a verification model to reduce the number of false alarms.
Experimental results demonstrate that the proposed systematic approach achieves 99.30% F1-score, 99.69% recall, and 98.91% precision in CPSC-DB.
arXiv Detail & Related papers (2020-12-29T21:10:54Z) - SE-ECGNet: A Multi-scale Deep Residual Network with
Squeeze-and-Excitation Module for ECG Signal Classification [6.124438924401066]
We develop a multi-scale deep residual network for the ECG signal classification task.
We are the first to propose to treat the multi-lead signal as a 2-dimensional matrix.
Our proposed model achieves 99.2% F1-score in the MIT-BIH dataset and 89.4% F1-score in Alibaba dataset.
arXiv Detail & Related papers (2020-12-10T08:37:44Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z) - Multi-Lead ECG Classification via an Information-Based Attention
Convolutional Neural Network [1.1720399305661802]
One-dimensional convolutional neural networks (CNN) have proven to be effective in pervasive classification tasks.
We implement the Residual connection and design a structure which can learn the weights from the information contained in different channels in the input feature map.
An indicator named mean square deviation is introduced to monitor the performance of a particular model segment in the classification task.
arXiv Detail & Related papers (2020-03-25T02:28:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.