A System for Critical Facility and Resource Optimization in Disaster Management and Planning
- URL: http://arxiv.org/abs/2410.02956v1
- Date: Thu, 3 Oct 2024 19:57:06 GMT
- Title: A System for Critical Facility and Resource Optimization in Disaster Management and Planning
- Authors: Emmanuel Tung, Ali Mostafavi, Maoxu Li, Sophie Li, Zeeshan Rasheed, Khurram Shafique,
- Abstract summary: Disruptions to medical infrastructure during disasters pose significant risks to critically ill patients with chronic kidney disease or end-stage renal disease.
This study proposes optimization models for patient reallocation and the strategic placement of temporary medical facilities to bolster the resilience of the critical care system.
- Score: 1.1039307771106914
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Disruptions to medical infrastructure during disasters pose significant risks to critically ill patients with advanced chronic kidney disease or end-stage renal disease. To enhance patient access to dialysis treatment under such conditions, it is crucial to assess the vulnerabilities of critical care facilities to hazardous events. This study proposes optimization models for patient reallocation and the strategic placement of temporary medical facilities to bolster the resilience of the critical care system, with a focus on equitable outcomes. Utilizing human mobility data from Texas, we evaluate patient access to critical care and dialysis centers under simulated hazard scenarios. The proposed bio-inspired optimization model, based on the Ant Colony optimization method, efficiently reallocates patients to mitigate disrupted access to dialysis facilities. The model outputs offer valuable insights into patient and hospital preparedness for disasters. Overall, the study presents a data-driven, analytics-based decision support tool designed to proactively mitigate potential disruptions in access to critical care facilities during disasters, tailored to the needs of health officials, emergency managers, and hospital system administrators in both the private and public sectors.
Related papers
- Optimal Hospital Capacity Management During Demand Surges [0.13635858675752993]
This study presents a data-driven framework to optimize capacity management decisions within hospital systems during surge events.
Two key decisions are optimized over a tactical planning horizon: allocating dedicated capacity to surge patients and transferring incoming patients between emergency departments.
The methodology is evaluated retrospectively in a hospital system during the height of the COVID-19 pandemic to demonstrate the potential impact of the recommended decisions.
arXiv Detail & Related papers (2024-03-23T06:06:06Z) - Safe and Interpretable Estimation of Optimal Treatment Regimes [54.257304443780434]
We operationalize a safe and interpretable framework to identify optimal treatment regimes.
Our findings support personalized treatment strategies based on a patient's medical history and pharmacological features.
arXiv Detail & Related papers (2023-10-23T19:59:10Z) - Safe AI for health and beyond -- Monitoring to transform a health
service [51.8524501805308]
We will assess the infrastructure required to monitor the outputs of a machine learning algorithm.
We will present two scenarios with examples of monitoring and updates of models.
arXiv Detail & Related papers (2023-03-02T17:27:45Z) - Optimal discharge of patients from intensive care via a data-driven
policy learning framework [58.720142291102135]
It is important that the patient discharge task addresses the nuanced trade-off between decreasing a patient's length of stay and the risk of readmission or even death following the discharge decision.
This work introduces an end-to-end general framework for capturing this trade-off to recommend optimal discharge timing decisions.
A data-driven approach is used to derive a parsimonious, discrete state space representation that captures a patient's physiological condition.
arXiv Detail & Related papers (2021-12-17T04:39:33Z) - COVID-Net Clinical ICU: Enhanced Prediction of ICU Admission for
COVID-19 Patients via Explainability and Trust Quantification [71.80459780697956]
We introduce COVID-Net Clinical ICU, a neural network for ICU admission prediction based on patient clinical data.
The proposed COVID-Net Clinical ICU was built using a clinical dataset from Hospital Sirio-Libanes comprising of 1,925 COVID-19 patients.
We conducted system-level insight discovery using a quantitative explainability strategy to study the decision-making impact of different clinical features.
arXiv Detail & Related papers (2021-09-14T14:16:32Z) - Adaptive Epidemic Forecasting and Community Risk Evaluation of COVID-19 [9.11149442423076]
We present a flexible end-to-end solution that seamlessly integrates public health data with tertiary client data to accurately estimate the risk of reopening a community.
At its core lies a state-of-the-art prediction model that auto-captures changing trends in transmission and mobility.
arXiv Detail & Related papers (2021-06-03T19:26:37Z) - Resource Planning for Hospitals Under Special Consideration of the
COVID-19 Pandemic: Optimization and Sensitivity Analysis [87.31348761201716]
Crises like the COVID-19 pandemic pose a serious challenge to health-care institutions.
BaBSim.Hospital is a tool for capacity planning based on discrete event simulation.
We aim to investigate and optimize these parameters to improve BaBSim.Hospital.
arXiv Detail & Related papers (2021-05-16T12:38:35Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - From predictions to prescriptions: A data-driven response to COVID-19 [42.57407485467993]
We propose a comprehensive data-driven approach to understand the clinical characteristics of COVID-19.
We build personalized calculators to predict the risk of infection and mortality.
We propose an optimization model to re-allocate ventilators and alleviate shortages.
arXiv Detail & Related papers (2020-06-30T03:34:00Z) - Optimizing Medical Treatment for Sepsis in Intensive Care: from
Reinforcement Learning to Pre-Trial Evaluation [2.908482270923597]
Our aim is to establish a framework where reinforcement learning (RL) of optimizing interventions retrospectively allows us a regulatory compliant pathway to prospective clinical testing of the learned policies.
We focus on infections in intensive care units which are one of the major causes of death and difficult to treat because of the complex and opaque patient dynamics.
arXiv Detail & Related papers (2020-03-13T20:31:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.