Adaptive Epidemic Forecasting and Community Risk Evaluation of COVID-19
- URL: http://arxiv.org/abs/2106.02094v1
- Date: Thu, 3 Jun 2021 19:26:37 GMT
- Title: Adaptive Epidemic Forecasting and Community Risk Evaluation of COVID-19
- Authors: Vishrawas Gopalakrishnan, Sayali Navalekar, Pan Ding, Ryan Hooley,
Jacob Miller, Raman Srinivasan, Ajay Deshpande, Xuan Liu, Simone Bianco,
James H. Kaufman
- Abstract summary: We present a flexible end-to-end solution that seamlessly integrates public health data with tertiary client data to accurately estimate the risk of reopening a community.
At its core lies a state-of-the-art prediction model that auto-captures changing trends in transmission and mobility.
- Score: 9.11149442423076
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pandemic control measures like lock-down, restrictions on restaurants and
gatherings, social-distancing have shown to be effective in curtailing the
spread of COVID-19. However, their sustained enforcement has negative economic
effects. To craft strategies and policies that reduce the hardship on the
people and the economy while being effective against the pandemic, authorities
need to understand the disease dynamics at the right geo-spatial granularity.
Considering factors like the hospitals' ability to handle the fluctuating
demands, evaluating various reopening scenarios, and accurate forecasting of
cases are vital to decision making. Towards this end, we present a flexible
end-to-end solution that seamlessly integrates public health data with tertiary
client data to accurately estimate the risk of reopening a community. At its
core lies a state-of-the-art prediction model that auto-captures changing
trends in transmission and mobility. Benchmarking against various published
baselines confirm the superiority of our forecasting algorithm. Combined with
the ability to extend to multiple client-specific requirements and perform
deductive reasoning through counter-factual analysis, this solution provides
actionable insights to multiple client domains ranging from government to
educational institutions, hospitals, and commercial establishments.
Related papers
- First 100 days of pandemic; an interplay of pharmaceutical, behavioral
and digital interventions -- A study using agent based modeling [14.192977334409104]
We simulate realistic pharmaceutical, behavioral, and digital interventions that mirror challenges in real-world policy adoption.
Our analysis reveals the pivotal role of the initial 100 days in dictating a pandemic's course.
arXiv Detail & Related papers (2024-01-09T19:38:59Z) - Data-Centric Epidemic Forecasting: A Survey [56.99209141838794]
This survey delves into various data-driven methodological and practical advancements.
We enumerate the large number of epidemiological datasets and novel data streams that are relevant to epidemic forecasting.
We also discuss experiences and challenges that arise in real-world deployment of these forecasting systems.
arXiv Detail & Related papers (2022-07-19T16:15:11Z) - Boosting the interpretability of clinical risk scores with intervention
predictions [59.22442473992704]
We propose a joint model of intervention policy and adverse event risk as a means to explicitly communicate the model's assumptions about future interventions.
We show how combining typical risk scores, such as the likelihood of mortality, with future intervention probability scores leads to more interpretable clinical predictions.
arXiv Detail & Related papers (2022-07-06T19:49:42Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - Impact of Interventional Policies Including Vaccine on Covid-19
Propagation and Socio-Economic Factors [0.7874708385247353]
This study aims to provide a predictive analytics framework to model, predict and simulate COVID-19 propagation and socio-economic impact.
We have leveraged a recently launched open-source COVID-19 big data platform and used published research to find potentially relevant variables.
An advanced machine learning pipeline has been developed armed with a self-evolving model, deployed on a modern machine learning architecture.
arXiv Detail & Related papers (2021-01-11T15:08:07Z) - Improving healthcare access management by predicting patient no-show
behaviour [0.0]
This work develops a Decision Support System (DSS) to support the implementation of strategies to encourage attendance.
We assess the effectiveness of different machine learning approaches to improve the accuracy of regression models.
In addition to quantifying relationships reported in previous studies, we find that income and neighbourhood crime statistics affect no-show probabilities.
arXiv Detail & Related papers (2020-12-10T14:57:25Z) - Epidemic mitigation by statistical inference from contact tracing data [61.04165571425021]
We develop Bayesian inference methods to estimate the risk that an individual is infected.
We propose to use probabilistic risk estimation in order to optimize testing and quarantining strategies for the control of an epidemic.
Our approaches translate into fully distributed algorithms that only require communication between individuals who have recently been in contact.
arXiv Detail & Related papers (2020-09-20T12:24:45Z) - From predictions to prescriptions: A data-driven response to COVID-19 [42.57407485467993]
We propose a comprehensive data-driven approach to understand the clinical characteristics of COVID-19.
We build personalized calculators to predict the risk of infection and mortality.
We propose an optimization model to re-allocate ventilators and alleviate shortages.
arXiv Detail & Related papers (2020-06-30T03:34:00Z) - Data-driven Simulation and Optimization for Covid-19 Exit Strategies [16.31545249131776]
The rapid spread of the Coronavirus SARS-2 is a major challenge that led almost all governments worldwide to take drastic measures to respond to the tragedy.
We have built a pandemic simulation and forecasting toolkit that combines a deep learning estimation of the epidemiological parameters of the disease.
arXiv Detail & Related papers (2020-06-12T11:18:25Z) - COVI White Paper [67.04578448931741]
Contact tracing is an essential tool to change the course of the Covid-19 pandemic.
We present an overview of the rationale, design, ethical considerations and privacy strategy of COVI,' a Covid-19 public peer-to-peer contact tracing and risk awareness mobile application developed in Canada.
arXiv Detail & Related papers (2020-05-18T07:40:49Z) - A Deep Q-learning/genetic Algorithms Based Novel Methodology For
Optimizing Covid-19 Pandemic Government Actions [63.669642197519934]
We use the SEIR epidemiological model to represent the evolution of the virus COVID-19 over time in the population.
The sequences of actions (confinement, self-isolation, two-meter distance or not taking restrictions) are evaluated according to a reward system.
We prove that our methodology is a valid tool to discover actions governments can take to reduce the negative effects of a pandemic in both senses.
arXiv Detail & Related papers (2020-05-15T17:17:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.