Vehicle Suspension Recommendation System: Multi-Fidelity Neural Network-based Mechanism Design Optimization
- URL: http://arxiv.org/abs/2410.03045v1
- Date: Thu, 3 Oct 2024 23:54:03 GMT
- Title: Vehicle Suspension Recommendation System: Multi-Fidelity Neural Network-based Mechanism Design Optimization
- Authors: Sumin Lee, Namwoo Kang,
- Abstract summary: Vehicle suspensions are designed to improve driving performance and ride comfort, but different types are available depending on the environment.
Traditional design process is multi-step, gradually reducing the number of design candidates while performing costly analyses to meet target performance.
Recently, AI models have been used to reduce the computational cost of FEA.
- Score: 4.038368925548051
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mechanisms are designed to perform functions in various fields. Often, there is no unique mechanism that performs a well-defined function. For example, vehicle suspensions are designed to improve driving performance and ride comfort, but different types are available depending on the environment. This variability in design makes performance comparison difficult. Additionally, the traditional design process is multi-step, gradually reducing the number of design candidates while performing costly analyses to meet target performance. Recently, AI models have been used to reduce the computational cost of FEA. However, there are limitations in data availability and different analysis environments, especially when transitioning from low-fidelity to high-fidelity analysis. In this paper, we propose a multi-fidelity design framework aimed at recommending optimal types and designs of mechanical mechanisms. As an application, vehicle suspension systems were selected, and several types were defined. For each type, mechanism parameters were generated and converted into 3D CAD models, followed by low-fidelity rigid body dynamic analysis under driving conditions. To effectively build a deep learning-based multi-fidelity surrogate model, the results of the low-fidelity analysis were analyzed using DBSCAN and sampled at 5% for high-cost flexible body dynamic analysis. After training the multi-fidelity model, a multi-objective optimization problem was formulated for the performance metrics of each suspension type. Finally, we recommend the optimal type and design based on the input to optimize ride comfort-related performance metrics. To validate the proposed methodology, we extracted basic design rules of Pareto solutions using data mining techniques. We also verified the effectiveness and applicability by comparing the results with those obtained from a conventional deep learning-based design process.
Related papers
- Model Fusion through Bayesian Optimization in Language Model Fine-Tuning [16.86812534268461]
Fine-tuning pre-trained models for downstream tasks is a widely adopted technique known for its adaptability and reliability across various domains.
We introduce a novel model fusion technique that optimize both the desired metric and loss through multi-objective Bayesian optimization.
Experiments across various downstream tasks show considerable performance improvements using our Bayesian optimization-guided method.
arXiv Detail & Related papers (2024-11-11T04:36:58Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - Compositional Generative Inverse Design [69.22782875567547]
Inverse design, where we seek to design input variables in order to optimize an underlying objective function, is an important problem.
We show that by instead optimizing over the learned energy function captured by the diffusion model, we can avoid such adversarial examples.
In an N-body interaction task and a challenging 2D multi-airfoil design task, we demonstrate that by composing the learned diffusion model at test time, our method allows us to design initial states and boundary shapes.
arXiv Detail & Related papers (2024-01-24T01:33:39Z) - Aligning Optimization Trajectories with Diffusion Models for Constrained
Design Generation [17.164961143132473]
We introduce a learning framework that demonstrates the efficacy of aligning the sampling trajectory of diffusion models with the optimization trajectory derived from traditional physics-based methods.
Our method allows for generating feasible and high-performance designs in as few as two steps without the need for expensive preprocessing, external surrogate models, or additional labeled data.
Our results demonstrate that TA outperforms state-of-the-art deep generative models on in-distribution configurations and halves the inference computational cost.
arXiv Detail & Related papers (2023-05-29T09:16:07Z) - Design Space Exploration and Explanation via Conditional Variational
Autoencoders in Meta-model-based Conceptual Design of Pedestrian Bridges [52.77024349608834]
This paper provides a performance-driven design exploration framework to augment the human designer through a Conditional Variational Autoencoder (CVAE)
The CVAE is trained on 18'000 synthetically generated instances of a pedestrian bridge in Switzerland.
arXiv Detail & Related papers (2022-11-29T17:28:31Z) - A Pareto-optimal compositional energy-based model for sampling and
optimization of protein sequences [55.25331349436895]
Deep generative models have emerged as a popular machine learning-based approach for inverse problems in the life sciences.
These problems often require sampling new designs that satisfy multiple properties of interest in addition to learning the data distribution.
arXiv Detail & Related papers (2022-10-19T19:04:45Z) - Design Amortization for Bayesian Optimal Experimental Design [70.13948372218849]
We build off of successful variational approaches, which optimize a parameterized variational model with respect to bounds on the expected information gain (EIG)
We present a novel neural architecture that allows experimenters to optimize a single variational model that can estimate the EIG for potentially infinitely many designs.
arXiv Detail & Related papers (2022-10-07T02:12:34Z) - A Collection of Quality Diversity Optimization Problems Derived from
Hyperparameter Optimization of Machine Learning Models [0.8029049649310213]
Quality Diversity Optimization generates diverse yet high-performing solutions to a given problem.
Our benchmark problems involve novel feature functions, such as interpretability or resource usage of models.
To allow for fast and efficient benchmarking, we build upon YAHPO Gym, a recently proposed open source benchmarking suite.
arXiv Detail & Related papers (2022-04-28T14:29:20Z) - Physical Design using Differentiable Learned Simulators [9.380022457753938]
In inverse design, learned forward simulators are combined with gradient-based design optimization.
This framework produces high-quality designs by propagating through trajectories of hundreds of steps.
Our results suggest that despite some remaining challenges, machine learning-based simulators are maturing to the point where they can support general-purpose design optimization.
arXiv Detail & Related papers (2022-02-01T19:56:39Z) - Conservative Objective Models for Effective Offline Model-Based
Optimization [78.19085445065845]
Computational design problems arise in a number of settings, from synthetic biology to computer architectures.
We propose a method that learns a model of the objective function that lower bounds the actual value of the ground-truth objective on out-of-distribution inputs.
COMs are simple to implement and outperform a number of existing methods on a wide range of MBO problems.
arXiv Detail & Related papers (2021-07-14T17:55:28Z) - Multi-Objective Evolutionary Design of CompositeData-Driven Models [0.0]
The implemented approach is based on a parameter-free genetic algorithm for model design called GPComp@Free.
The experimental results confirm that a multi-objective approach to the model design allows achieving better diversity and quality of obtained models.
arXiv Detail & Related papers (2021-03-01T20:45:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.