論文の概要: Deliberate Reasoning for LLMs as Structure-aware Planning with Accurate World Model
- arxiv url: http://arxiv.org/abs/2410.03136v2
- Date: Thu, 28 Nov 2024 19:47:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-02 20:28:07.417769
- Title: Deliberate Reasoning for LLMs as Structure-aware Planning with Accurate World Model
- Title(参考訳): 正確な世界モデルを用いた構造を考慮したLLMのリレーショナル推論
- Authors: Siheng Xiong, Ali Payani, Yuan Yang, Faramarz Fekri,
- Abstract要約: 大規模言語モデル(LLM)のためのSWAP(Structure-Aware Planning)を提案する。
SWAPは、世界モデルによる推論プロセスのガイドとして構造情報を導入し、ステップ上のソフト検証メカニズムを提供する。
SWAPは,数理推論,論理推論,コーディングタスクなど,多種多様な推論集約型ベンチマークで評価される。
- 参考スコア(独自算出の注目度): 14.480267340831542
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Enhancing the reasoning capabilities of large language models (LLMs) remains a key challenge, especially for tasks that require complex, multi-step decision-making. Humans excel at these tasks by leveraging deliberate planning with an internal world model to simulate the potential outcomes of various actions. Inspired by this, we propose a novel multi-step reasoning framework for LLMs, referred to as Structure-aware Planning with Accurate World Model (SWAP). Unlike previous approaches that rely solely on Chain-of-Thought (CoT) reasoning in natural language, SWAP incorporates structural information to guide the reasoning process via a world model and provides a soft verification mechanism over the steps. Moreover, SWAP overcomes the challenge of accurate world state predictions in complex reasoning tasks by introducing a Generator-Discriminator architecture, which enables more reliable world modeling. Specifically, the generator predicts the next state, and the discriminator ensures alignment with the logical consistency required by the problem context. SWAP also encourages the policy model to explore a broad range of potential actions to prevent premature convergence. By resolving the bottlenecks of generation diversity for both actions and states using diversity-based modeling (DBM) and improving discrimination accuracy through contrastive ranking (CR), SWAP significantly enhances the reasoning performance of LLMs. We evaluate SWAP across diverse reasoning-intensive benchmarks including math reasoning, logical reasoning, and coding tasks. Extensive experiments demonstrate that SWAP achieves substantial improvements over the baselines and consistently outperforms existing methods.
- Abstract(参考訳): 大規模言語モデル(LLM)の推論能力の強化は、特に複雑で多段階の意思決定を必要とするタスクにおいて、依然として重要な課題である。
人間は、様々な行動の潜在的な結果をシミュレートするために、内的世界モデルによる計画的計画を活用することで、これらのタスクを遂行する。
そこで我々は,LLMのための多段階推論フレームワークを提案し,これをSWAP(Structure-Aware Planning with Accurate World Model)と呼ぶ。
自然言語におけるChain-of-Thought(CoT)推論のみに依存する従来のアプローチとは異なり、SWAPは構造情報を取り入れ、世界モデルを通じて推論プロセスをガイドし、ステップ上のソフトな検証メカニズムを提供する。
さらに、SWAPは、より信頼性の高い世界モデリングを可能にするGenerator-Discriminatorアーキテクチャを導入することで、複雑な推論タスクにおける正確な世界状態予測の課題を克服する。
具体的には、ジェネレータが次の状態を予測し、判別器は問題コンテキストで要求される論理的一貫性と整合性を確保する。
SWAPはまた、早期収束を防ぐための幅広い潜在的な行動を探る政策モデルを奨励している。
多様性に基づくモデリング(DBM)を用いて行動と状態の両方の世代多様性のボトルネックを解消し、比較的ランキング(CR)による識別精度を向上させることにより、SWAPはLLMの推論性能を著しく向上させる。
SWAPは,数理推論,論理推論,コーディングタスクなど,多種多様な推論集約型ベンチマークで評価される。
大規模な実験により、SWAPはベースラインよりも大幅に改善され、既存の手法より一貫して優れていることが示された。
関連論文リスト
- CSE-SFP: Enabling Unsupervised Sentence Representation Learning via a Single Forward Pass [3.0566617373924325]
プレトレーニング言語モデル(PLM)の最近の進歩は、この分野において顕著な進歩をもたらした。
CSE-SFPは,生成モデルの構造的特徴を利用する革新的な手法である。
CSE-SFPは高品質な埋め込みを実現するだけでなく、トレーニング時間とメモリ消費を著しく削減する。
論文 参考訳(メタデータ) (2025-05-01T08:27:14Z) - Dancing with Critiques: Enhancing LLM Reasoning with Stepwise Natural Language Self-Critique [66.94905631175209]
我々は、段階的に自然言語の自己批判(PANEL)を行う新しい推論時間スケーリング手法を提案する。
ステップレベルの探索プロセスのガイドとして、自己生成の自然言語批判をフィードバックとして採用している。
このアプローチは、タスク固有の検証と関連するトレーニングオーバーヘッドの必要性を回避します。
論文 参考訳(メタデータ) (2025-03-21T17:59:55Z) - Large Language Models Meet Symbolic Provers for Logical Reasoning Evaluation [24.081573908824353]
一階述語論理(FOL)推論はインテリジェントシステムにおいて重要である。
既存のベンチマークは、広範囲の人間のアノテーションや手作りテンプレートに依存していることが多い。
本稿では,大言語モデルの生成強度を記号型プローサの厳密性と精度で相乗化するProverGenという新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-10T15:31:54Z) - Exploring Robustness of LLMs to Sociodemographically-Conditioned Paraphrasing [7.312170216336085]
我々は、社会デミノグラフィーの次元にまたがる幅広いバリエーションを探求するために、より広いアプローチを取る。
我々はSocialIQAデータセットを拡張し、ソシオデミノグラフィースタイルを条件とした多様なパラフレーズセットを作成する。
人口統計学的パラフレーズが言語モデルの性能に大きく影響していることが判明した。
論文 参考訳(メタデータ) (2025-01-14T17:50:06Z) - Counterfactual Samples Constructing and Training for Commonsense Statements Estimation [17.970740197590693]
可塑性推定は、言語モデルが現実世界を客観的に理解できるようにする上で重要な役割を果たす。
理想的なPEモデルの2つの重要な特徴を欠いている。
本稿では,Commonsense Counterfactual Samples Generatingと呼ばれる新しいモデル非依存手法を提案する。
論文 参考訳(メタデータ) (2024-12-29T20:18:52Z) - Comparative Analysis of Pooling Mechanisms in LLMs: A Sentiment Analysis Perspective [2.2334256816037987]
BERTやGPTのようなトランスフォーマーベースのモデルは、トークンレベルの埋め込みを文レベルの表現に集約するためにプール層に依存している。
Mean、Max、Weighted Sumといった一般的なプール機構は、この集約プロセスにおいて重要な役割を果たす。
本稿では,これらのプール機構が文レベル感情分析の文脈における2つの著名なLCMファミリー(BERTとGPT)に与える影響について検討する。
論文 参考訳(メタデータ) (2024-11-22T00:59:25Z) - Language Agents Meet Causality -- Bridging LLMs and Causal World Models [50.79984529172807]
因果表現学習を大規模言語モデルと統合する枠組みを提案する。
このフレームワークは、自然言語表現に関連付けられた因果変数を持つ因果世界モデルを学ぶ。
本研究では,時間的スケールと環境の複雑さを考慮した因果推論と計画課題の枠組みを評価する。
論文 参考訳(メタデータ) (2024-10-25T18:36:37Z) - Unconstrained Model Merging for Enhanced LLM Reasoning [42.079040543428036]
複数のエキスパートモデルをひとつの大きな言語モデルにマージする可能性について検討する。
等質なモデルアーキテクチャと異質なモデルアーキテクチャの両方に対応可能な,制約のないモデルマージフレームワークを提案する。
7つのベンチマークと9つの推論最適化LDMで、推論がマージから出現する重要な発見を明らかにする。
論文 参考訳(メタデータ) (2024-10-17T16:04:07Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTRは、ヒトに適応し、多目的な意思決定を提供する新しいニューロシンボリックアーキテクチャである。
我々のフレームワークは、ACT-Rの内部決定過程の知識を潜在神経表現として抽出し、組み込む。
デザイン・フォー・マニュファクチャリング・タスクに関する我々の実験は、タスク性能の向上と基礎的意思決定能力の向上を両立させたものである。
論文 参考訳(メタデータ) (2024-08-17T11:49:53Z) - Exploring and Benchmarking the Planning Capabilities of Large Language Models [57.23454975238014]
この研究は、大規模言語モデル(LLM)の計画能力を改善するための基礎を築いた。
我々は、古典的な計画ベンチマークと自然言語シナリオの両方を含む包括的なベンチマークスイートを構築した。
本研究は,LLM計画の強化を目的としたマルチショットインコンテキスト学習について検討し,文脈長の増大と計画性能の向上の関係について検討する。
論文 参考訳(メタデータ) (2024-06-18T22:57:06Z) - Meta Reasoning for Large Language Models [58.87183757029041]
大規模言語モデル(LLM)の新規かつ効率的なシステムプロセッシング手法であるメタ推論プロンプト(MRP)を導入する。
MRPは、各タスクの特定の要求に基づいて異なる推論メソッドを動的に選択し、適用するようLLMに誘導する。
総合的なベンチマークによりMPPの有効性を評価する。
論文 参考訳(メタデータ) (2024-06-17T16:14:11Z) - MARS: Benchmarking the Metaphysical Reasoning Abilities of Language Models with a Multi-task Evaluation Dataset [50.36095192314595]
大きな言語モデル(LLM)は、一般化可能な推論能力を持つ意識的なエージェントとして機能する。
この能力は、イベントにおける無限の可能な変更をモデル化する複雑さのために、まだ探索されていない。
我々は,各ステップに対応する3つのタスクからなる最初のベンチマークMARSを紹介する。
論文 参考訳(メタデータ) (2024-06-04T08:35:04Z) - A Large-Scale Evaluation of Speech Foundation Models [110.95827399522204]
音声処理ユニバーサルパフォーマンスベンチマーク(SUPERB)を構築し,基礎モデルパラダイムの有効性について検討する。
凍結基盤モデルを用いてSUPERBにおける音声処理タスクに対処する統合マルチタスクフレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-15T00:03:16Z) - DPP-Based Adversarial Prompt Searching for Lanugage Models [56.73828162194457]
Auto-Regressive Selective Replacement Ascent (ASRA)は、決定点プロセス(DPP)と品質と類似性の両方に基づいてプロンプトを選択する離散最適化アルゴリズムである。
6種類の事前学習言語モデルに対する実験結果から,ASRAによる有害成分の抽出の有効性が示された。
論文 参考訳(メタデータ) (2024-03-01T05:28:06Z) - HGOT: Hierarchical Graph of Thoughts for Retrieval-Augmented In-Context Learning in Factuality Evaluation [20.178644251662316]
本稿では,文脈内学習における関連する文節の検索を促進するために,階層的思考グラフ(HGOT)を導入する。
このフレームワークは、複雑なクエリを管理可能なサブクエリに分割する、分割/クエリ戦略を採用している。
それは、最近提案された引用リコールと精度の指標を取り入れた、回答の選択のための自己一貫性の過半数投票を洗練する。
論文 参考訳(メタデータ) (2024-02-14T18:41:19Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
大規模言語モデル(LLM)は、対話的な意思決定タスクにおいてインテリジェントなエージェントとして期待されている。
本稿では,トークンレベルでのLLMの最適化に適したエントロピー拡張RL法である,エントロピー正規化トークンレベル最適化(ETPO)を導入する。
我々は,データサイエンスコード生成を多段階対話型タスクのシリーズとしてモデル化したシミュレーション環境におけるETPOの有効性を評価する。
論文 参考訳(メタデータ) (2024-02-09T07:45:26Z) - Solution-oriented Agent-based Models Generation with Verifier-assisted
Iterative In-context Learning [10.67134969207797]
エージェントベースのモデル(ABM)は、仮説的な解決策やポリシーの提案と検証に不可欠なパラダイムである。
大きな言語モデル(LLM)は、ドメイン間の知識とプログラミング能力をカプセル化することで、このプロセスの難しさを軽減できる可能性がある。
SAGEは、ターゲット問題に対する自動モデリングおよびソリューション生成のために設計された、汎用的なソリューション指向のABM生成フレームワークである。
論文 参考訳(メタデータ) (2024-02-04T07:59:06Z) - LLM-SAP: Large Language Models Situational Awareness Based Planning [0.0]
我々は、潜在的なリスクを予測し、積極的に軽減する方法論を開発するために、マルチエージェント推論フレームワークを使用します。
提案手法は,人間中心のインタラクションの複雑さを計画プロセスに組み込むことによって,従来のオートマトン理論から分岐する。
論文 参考訳(メタデータ) (2023-12-26T17:19:09Z) - Model Stealing Attack against Graph Classification with Authenticity, Uncertainty and Diversity [80.16488817177182]
GNNは、クエリ許可を通じてターゲットモデルを複製するための悪行であるモデル盗難攻撃に対して脆弱である。
異なるシナリオに対応するために,3つのモデルステルス攻撃を導入する。
論文 参考訳(メタデータ) (2023-12-18T05:42:31Z) - Generative Judge for Evaluating Alignment [84.09815387884753]
本稿では,これらの課題に対処するために,13Bパラメータを持つ生成判断器Auto-Jを提案する。
我々のモデルは,大規模な実環境シナリオ下でのユーザクエリとLLM生成応答に基づいて訓練されている。
実験的に、Auto-Jはオープンソースモデルとクローズドソースモデルの両方を含む、強力なライバルのシリーズを上回っている。
論文 参考訳(メタデータ) (2023-10-09T07:27:15Z) - Joint Contextual Modeling for ASR Correction and Language Understanding [60.230013453699975]
言語理解(LU)と協調してASR出力の文脈的言語補正を行うマルチタスクニューラルアプローチを提案する。
そこで本研究では,市販のASRおよびLUシステムの誤差率を,少量のドメイン内データを用いてトレーニングしたジョイントモデルと比較して14%削減できることを示した。
論文 参考訳(メタデータ) (2020-01-28T22:09:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。