論文の概要: Comparative Analysis of Pooling Mechanisms in LLMs: A Sentiment Analysis Perspective
- arxiv url: http://arxiv.org/abs/2411.14654v1
- Date: Fri, 22 Nov 2024 00:59:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-25 15:04:10.473653
- Title: Comparative Analysis of Pooling Mechanisms in LLMs: A Sentiment Analysis Perspective
- Title(参考訳): LLMにおけるプール機構の比較分析:感性分析の観点から
- Authors: Jinming Xing, Ruilin Xing, Yan Sun,
- Abstract要約: BERTやGPTのようなトランスフォーマーベースのモデルは、トークンレベルの埋め込みを文レベルの表現に集約するためにプール層に依存している。
Mean、Max、Weighted Sumといった一般的なプール機構は、この集約プロセスにおいて重要な役割を果たす。
本稿では,これらのプール機構が文レベル感情分析の文脈における2つの著名なLCMファミリー(BERTとGPT)に与える影響について検討する。
- 参考スコア(独自算出の注目度): 2.2334256816037987
- License:
- Abstract: Large Language Models (LLMs) have revolutionized natural language processing (NLP) by delivering state-of-the-art performance across a variety of tasks. Among these, Transformer-based models like BERT and GPT rely on pooling layers to aggregate token-level embeddings into sentence-level representations. Common pooling mechanisms such as Mean, Max, and Weighted Sum play a pivotal role in this aggregation process. Despite their widespread use, the comparative performance of these strategies on different LLM architectures remains underexplored. To address this gap, this paper investigates the effects of these pooling mechanisms on two prominent LLM families -- BERT and GPT, in the context of sentence-level sentiment analysis. Comprehensive experiments reveal that each pooling mechanism exhibits unique strengths and weaknesses depending on the task's specific requirements. Our findings underline the importance of selecting pooling methods tailored to the demands of particular applications, prompting a re-evaluation of common assumptions regarding pooling operations. By offering actionable insights, this study contributes to the optimization of LLM-based models for downstream tasks.
- Abstract(参考訳): 大規模言語モデル(LLM)は、さまざまなタスクで最先端のパフォーマンスを提供することによって、自然言語処理(NLP)に革命をもたらした。
BERTやGPTのようなTransformerベースのモデルは、トークンレベルの埋め込みを文レベルの表現に集約するためにプール層に依存している。
Mean、Max、Weighted Sumといった一般的なプール機構は、この集約プロセスにおいて重要な役割を果たす。
広く使われているにもかかわらず、異なるLLMアーキテクチャにおけるこれらの戦略の比較性能は未定である。
そこで本研究では,これらのプール機構が,文レベル感情分析の文脈において,BERT と GPT の2つの著名な LLM ファミリーに与える影響について検討する。
総合的な実験により、各プール機構はタスクの特定の要求に応じて独自の強みと弱みを示すことが明らかになった。
本研究は, プーリング操作に関する一般的な仮定を再評価する上で, 特定のアプリケーションのニーズに合わせて, プーリング手法を選択することの重要性を浮き彫りにしている。
動作可能な洞察を提供することにより、下流タスクのためのLLMモデル最適化に寄与する。
関連論文リスト
- Learn from Downstream and Be Yourself in Multimodal Large Language Model Fine-Tuning [104.27224674122313]
微調整MLLMは、特定の下流タスクのパフォーマンスを改善するための一般的なプラクティスとなっている。
一般化と特殊化のトレードオフのバランスをとるために,事前学習と微調整の両方におけるパラメータの重要度を測定することを提案する。
論文 参考訳(メタデータ) (2024-11-17T01:16:37Z) - Probing Ranking LLMs: Mechanistic Interpretability in Information Retrieval [22.875174888476295]
我々は最先端の微調整型変圧器ネットワークの動作について検討する。
我々のアプローチは、LLM内のニューロンの探索に基づく層間層解析である。
ネットワークのアクティベーションの中で、既知の人間工学的・意味的な特徴の個人またはグループを特定する。
論文 参考訳(メタデータ) (2024-10-24T08:20:10Z) - EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
大規模言語モデル(LLM)は、不確実性の下で最適な意思決定を必要とするシナリオにおいて、未調査のままである。
多くのアプリケーションに関係のあるステートレス強化学習環境である,帯域幅を最適に決定できる LLM の (in) 能力の測定を行う。
最適な探索アルゴリズムの存在を動機として,このアルゴリズム知識をLLMに統合する効率的な方法を提案する。
論文 参考訳(メタデータ) (2024-10-08T17:54:03Z) - Deliberate Reasoning for LLMs as Structure-aware Planning with Accurate World Model [14.480267340831542]
大規模言語モデル(LLM)のためのSWAP(Structure-Aware Planning)を提案する。
SWAPは、世界モデルによる推論プロセスのガイドとして構造情報を導入し、ステップ上のソフト検証メカニズムを提供する。
SWAPは,数理推論,論理推論,コーディングタスクなど,多種多様な推論集約型ベンチマークで評価される。
論文 参考訳(メタデータ) (2024-10-04T04:23:36Z) - Pooling And Attention: What Are Effective Designs For LLM-Based Embedding Models? [18.990655668481075]
我々は,最後の層だけでなく,すべての隠蔽層の出力を横断的ネットワークを用いて変換する,新しいプーリング戦略であるMulti-Layers Trainable Poolingを提案する。
本稿では,LLMをベースとした埋め込みモデルの効果的なトレーニング戦略について述べる。
論文 参考訳(メタデータ) (2024-09-04T14:01:48Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
本稿では,高度に訓練された高密度FFNを余分なサブネットワークに分解する新しいアプローチであるFacterLLMを紹介する。
FactorLLMは、最大85%のモデル性能を確保しながら、推論速度を30%以上増加させながら、ソースモデルに匹敵するパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-08-15T16:45:16Z) - Meta Reasoning for Large Language Models [58.87183757029041]
大規模言語モデル(LLM)の新規かつ効率的なシステムプロセッシング手法であるメタ推論プロンプト(MRP)を導入する。
MRPは、各タスクの特定の要求に基づいて異なる推論メソッドを動的に選択し、適用するようLLMに誘導する。
総合的なベンチマークによりMPPの有効性を評価する。
論文 参考訳(メタデータ) (2024-06-17T16:14:11Z) - Evaluating the Generalization Ability of Quantized LLMs: Benchmark, Analysis, and Toolbox [46.39670209441478]
大規模言語モデル(LLM)は、複数のシナリオでエキサイティングな進歩を見せている。
メモリフットプリントと推論コストを削減する効果的な方法として、量子化は低ビット幅での性能劣化にも直面する。
この研究は、評価システム、詳細な分析、一般的なツールボックスを含む、この研究トピックのための包括的なベンチマークスイートを提供する。
論文 参考訳(メタデータ) (2024-06-15T12:02:14Z) - Ensemble Learning for Heterogeneous Large Language Models with Deep Parallel Collaboration [39.35476224845088]
大規模言語モデル(LLM)は様々なタスクにおいて補完的な強みを示し、LLMアンサンブルの研究を動機付けている。
本稿では,各復号ステップで異なるLLMから得られる情報的確率分布を融合した学習自由アンサンブルフレームワークDeePEnを提案する。
論文 参考訳(メタデータ) (2024-04-19T08:52:22Z) - Retrieval-augmented Multi-modal Chain-of-Thoughts Reasoning for Large
Language Models [56.256069117502385]
Chain of Thought (CoT)アプローチは、複雑な推論タスクにおいて、LLM(Large Language Models)の能力を高めるために使用できる。
しかし、マルチモーダル推論における最適なCoT実例の選択は、まだ検討されていない。
本稿では,この課題に対処する新しい手法として,検索機構を用いて実演例を自動的に選択する手法を提案する。
論文 参考訳(メタデータ) (2023-12-04T08:07:21Z) - Learning Robust State Abstractions for Hidden-Parameter Block MDPs [55.31018404591743]
我々は、ブロックMDPにインスパイアされた堅牢な状態抽象化を実現するために、HiP-MDP設定からの共通構造の概念を活用する。
マルチタスク強化学習 (MTRL) とメタ強化学習 (Meta-RL) の両方のための新しいフレームワークのインスタンス化を導出する。
論文 参考訳(メタデータ) (2020-07-14T17:25:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。