論文の概要: Bridging the Gap between Text, Audio, Image, and Any Sequence: A Novel Approach using Gloss-based Annotation
- arxiv url: http://arxiv.org/abs/2410.03146v1
- Date: Mon, 14 Oct 2024 03:06:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-03 03:24:16.274630
- Title: Bridging the Gap between Text, Audio, Image, and Any Sequence: A Novel Approach using Gloss-based Annotation
- Title(参考訳): テキスト,音声,画像,および任意のシーケンス間のギャップを埋める:グロスアノテーションを用いた新しいアプローチ
- Authors: Sen Fang, Yalin Feng, Sizhou Chen, Xiaofeng Zhang, Teik Toe Teoh,
- Abstract要約: 本稿では,光沢に基づくアノテーションを利用してマルチモーダル理解を簡素化する,BGTAIと呼ばれる革新的な手法を提案する。
テキストと音声を、複雑な意味的ニュアンスを省略するグロス表記として表現することで、画像との整合性が向上する可能性がある。
- 参考スコア(独自算出の注目度): 5.528860524494717
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents an innovative approach called BGTAI to simplify multimodal understanding by utilizing gloss-based annotation as an intermediate step in aligning Text and Audio with Images. While the dynamic temporal factors in textual and audio inputs contain various predicate adjectives that influence the meaning of the entire sentence, images, on the other hand, present static scenes. By representing text and audio as gloss notations that omit complex semantic nuances, a better alignment with images can potentially be achieved. This study explores the feasibility of this idea, specifically, we first propose the first Langue2Gloss model and then integrate it into the multimodal model UniBriVL for joint training. To strengthen the adaptability of gloss with text/audio and overcome the efficiency and instability issues in multimodal training, we propose a DS-Net (Data-Pair Selection Network), an Result Filter module, and a novel SP-Loss function. Our approach outperforms previous multimodal models in the main experiments, demonstrating its efficacy in enhancing multimodal representations and improving compatibility among text, audio, visual, and any sequence modalities.
- Abstract(参考訳): 本稿では,テキストと音声を画像と整合させる中間ステップとして,光沢に基づくアノテーションを活用することで,マルチモーダル理解を簡素化する,BGTAIと呼ばれる革新的なアプローチを提案する。
テキスト入力や音声入力における動的時間的要因は、文全体の意味に影響を与える様々な述語形容詞を含む一方で、画像は静的な場面を示す。
テキストと音声を、複雑な意味的ニュアンスを省略するグロス表記として表現することで、画像との整合性が向上する可能性がある。
本研究では,このアイデアの実現可能性について検討し,まず最初にLangue2Glossモデルを提案し,そのモデルをマルチモーダルモデルUniBriVLに統合して共同トレーニングを行う。
テキスト/オーディオによる光沢の適応性を高め,マルチモーダルトレーニングにおける効率性と不安定性を克服するために,DS-Net(Data-Pair Selection Network),結果フィルタモジュール,新しいSP-Loss関数を提案する。
提案手法は,従来のマルチモーダルモデルよりも優れており,マルチモーダル表現の強化やテキスト,音声,視覚,シーケンスの整合性の向上に有効であることを示す。
関連論文リスト
- Revisit Large-Scale Image-Caption Data in Pre-training Multimodal Foundation Models [63.01630478059315]
マルチモーダルモデルの最近の進歩は、性能向上のための書き直しキャプションの価値を強調している。
プレトレーニングにおける合成キャプションとオリジナルのWebcrawled AltTextsとの相互作用が、まだよく理解されていないかどうかは不明だ。
様々なマルチモーダルモデルに適した多様なキャプションフォーマットを生成するために,新しい,制御可能な,スケーラブルなキャプションパイプラインを提案する。
論文 参考訳(メタデータ) (2024-10-03T17:54:52Z) - Fuse & Calibrate: A bi-directional Vision-Language Guided Framework for Referring Image Segmentation [8.383431263616105]
FCNetは,視覚と言語の両方が役割を担っている,双方向誘導融合方式のフレームワークである。
具体的には、視覚誘導方式を用いて初期マルチモーダル融合を行い、キービジョン情報に焦点を当てたマルチモーダル特徴を得る。
次に,言語誘導型キャリブレーションモジュールを提案し,これらのマルチモーダル特徴をキャリブレーションし,入力文の文脈を確実に理解する。
論文 参考訳(メタデータ) (2024-05-18T07:21:12Z) - VILAS: Exploring the Effects of Vision and Language Context in Automatic
Speech Recognition [18.19998336526969]
ViLaS(Vision and Language into Automatic Speech Recognition)は、CIF(Continuous Integration-and-fire)機構に基づく新しいマルチモーダルASRモデルである。
視覚と言語を統合することの効果を探るため、中国語と英語の両バージョンでマルチモーダルコンテキストキューを備えたマルチモーダルASRデータセットであるVSDialを開発した。
論文 参考訳(メタデータ) (2023-05-31T16:01:20Z) - SUR-adapter: Enhancing Text-to-Image Pre-trained Diffusion Models with
Large Language Models [56.88192537044364]
本研究では,事前学習拡散モデルに対するセマンティック・アダプタ (SUR-adapter) と呼ばれる簡易なパラメータ効率の良い微調整手法を提案する。
ユーザエクスペリエンスの向上により,テキストから画像への拡散モデルの使いやすさが向上する。
論文 参考訳(メタデータ) (2023-05-09T05:48:38Z) - A Multi-Modal Context Reasoning Approach for Conditional Inference on
Joint Textual and Visual Clues [23.743431157431893]
共同文と視覚的手がかりの条件推論は多モーダル推論タスクである。
我々はModCRというマルチモーダルコンテキスト推論手法を提案する。
2つの対応するデータセットに対して広範囲な実験を行い、実験結果により性能が大幅に向上した。
論文 参考訳(メタデータ) (2023-05-08T08:05:40Z) - Multi-Modal Representation Learning with Text-Driven Soft Masks [48.19806080407593]
自己教師型学習フレームワークにおける視覚言語表現学習手法を提案する。
画像中の領域をソフトメイキングすることで、画像テキストマッチング(ITM)タスクの多様な特徴を生成する。
マルチモーダルエンコーダを用いて単語条件の視覚的注意を計算し,各単語に関連する領域を同定する。
論文 参考訳(メタデータ) (2023-04-03T05:07:49Z) - Universal Multimodal Representation for Language Understanding [110.98786673598015]
本研究は,一般的なNLPタスクの補助信号として視覚情報を利用する新しい手法を提案する。
各文に対して、まず、既存の文-画像ペア上で抽出された軽トピック-画像検索テーブルから、フレキシブルな画像を検索する。
そして、テキストと画像はそれぞれトランスフォーマーエンコーダと畳み込みニューラルネットワークによって符号化される。
論文 参考訳(メタデータ) (2023-01-09T13:54:11Z) - MaPLe: Multi-modal Prompt Learning [54.96069171726668]
本稿では,視覚と言語分岐の両方を対象としたマルチモーダル・プロンプト・ラーニング(MaPLe)を提案し,視覚と言語表現の整合性を改善する。
最先端のCo-CoOpと比較すると、MaPLeは優れた性能を示し、新規クラスでは3.45%の絶対的な向上を達成している。
論文 参考訳(メタデータ) (2022-10-06T17:59:56Z) - Improving Image Captioning with Better Use of Captions [65.39641077768488]
本稿では,画像表現とキャプション生成の両方を強化するために,キャプションで利用可能なセマンティクスをよりよく探求するための新しい画像キャプションアーキテクチャを提案する。
我々のモデルはまず,弱教師付きマルチインスタンス学習を用いて,有益な帰納バイアスをもたらすキャプション誘導型視覚関係グラフを構築した。
生成期間中、このモデルは、単語とオブジェクト/述語タグのシーケンスを共同で予測するために、マルチタスク学習を用いた視覚関係をさらに取り入れる。
論文 参考訳(メタデータ) (2020-06-21T14:10:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。