論文の概要: Autoregressive Moving-average Attention Mechanism for Time Series Forecasting
- arxiv url: http://arxiv.org/abs/2410.03159v1
- Date: Fri, 4 Oct 2024 05:45:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-03 03:24:16.252268
- Title: Autoregressive Moving-average Attention Mechanism for Time Series Forecasting
- Title(参考訳): 時系列予測のための自己回帰移動平均アテンション機構
- Authors: Jiecheng Lu, Xu Han, Yan Sun, Shihao Yang,
- Abstract要約: 本稿では,各種の線形アテンション機構に適応可能な自己回帰(AR)移動平均アテンション構造を提案する。
本稿では、まず、時系列予測(TSF)タスクに対して、これまで見過ごされていたデコーダのみの自己回帰変換モデルが、最良のベースラインに匹敵する結果が得られることを実証する。
- 参考スコア(独自算出の注目度): 9.114664059026767
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose an Autoregressive (AR) Moving-average (MA) attention structure that can adapt to various linear attention mechanisms, enhancing their ability to capture long-range and local temporal patterns in time series. In this paper, we first demonstrate that, for the time series forecasting (TSF) task, the previously overlooked decoder-only autoregressive Transformer model can achieve results comparable to the best baselines when appropriate tokenization and training methods are applied. Moreover, inspired by the ARMA model from statistics and recent advances in linear attention, we introduce the full ARMA structure into existing autoregressive attention mechanisms. By using an indirect MA weight generation method, we incorporate the MA term while maintaining the time complexity and parameter size of the underlying efficient attention models. We further explore how indirect parameter generation can produce implicit MA weights that align with the modeling requirements for local temporal impacts. Experimental results show that incorporating the ARMA structure consistently improves the performance of various AR attentions on TSF tasks, achieving state-of-the-art results.
- Abstract(参考訳): 本稿では,様々な線形アテンション機構に適応できる自己回帰(AR)移動平均アテンション構造を提案する。
本稿では、時系列予測(TSF)タスクにおいて、予め見落とされたデコーダのみの自己回帰変換モデルを用いて、適切なトークン化とトレーニング手法を適用すると、最適なベースラインに匹敵する結果が得られることを示す。
さらに、統計学と最近の線形注意の進歩からARMAモデルに着想を得て、既存の自己回帰的注意機構に完全なARMA構造を導入する。
間接MA重み生成法を用いて,MA項を基礎となる効率的な注目モデルの時間的複雑さとパラメータサイズを維持しつつ組み込む。
さらに、間接パラメータ生成が局所的時間的影響のモデリング要求に合致する暗黙のMA重みを生成する方法について検討する。
実験結果から、ARMA構造を組み込むことで、TSFタスクにおける様々なAR注意の処理性能が向上し、最先端の結果が得られた。
関連論文リスト
- Steering Masked Discrete Diffusion Models via Discrete Denoising Posterior Prediction [88.65168366064061]
本稿では,確率論的推論の課題として,事前学習したMDMを操る作業を行う新しいフレームワークであるDDPPを紹介する。
私たちのフレームワークは、3つの新しい目標のファミリーにつながります。
Wet-lab Validation(ウェット・ラブ・バリデーション)を用いて,報酬最適化タンパク質配列の過渡的発現を観察する。
論文 参考訳(メタデータ) (2024-10-10T17:18:30Z) - Diffusion Auto-regressive Transformer for Effective Self-supervised Time Series Forecasting [47.58016750718323]
我々はTimeDARTと呼ばれる新しい自己管理手法を提案する。
TimeDARTは、時系列データ内のグローバルシーケンス依存とローカル詳細特徴の両方をキャプチャする。
私たちのコードはhttps://github.com/Melmaphother/TimeDART.comで公開されています。
論文 参考訳(メタデータ) (2024-10-08T06:08:33Z) - Local Attention Mechanism: Boosting the Transformer Architecture for Long-Sequence Time Series Forecasting [8.841114905151152]
局所注意機構 (LAM) は時系列解析に適した効率的な注意機構である。
LAMは時系列の連続性特性を利用して計算された注目点数を減少させる。
時間とメモリO(nlogn)で動作する代数テンソルにLAMを実装するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-04T11:32:02Z) - Low-Rank Adaptation of Time Series Foundational Models for Out-of-Domain Modality Forecasting [5.354055742467354]
Low-Rank Adaptation (LoRA) は、様々なモダリティやタスクにまたがる大規模または基礎的なモデルを微調整する手法である。
本稿では,Lug-Llama,MOIRAI,Chronosといった現代時系列基盤モデルに対するLoRAの影響について検討する。
論文 参考訳(メタデータ) (2024-05-16T16:05:33Z) - Attention as Robust Representation for Time Series Forecasting [23.292260325891032]
多くの実用化には時系列予測が不可欠である。
トランスフォーマーの重要な特徴、注意機構、データ表現を強化するために動的に埋め込みを融合させ、しばしば注意重みを副産物の役割に還元する。
提案手法は,時系列の主表現として注目重みを高くし,データポイント間の時間的関係を利用して予測精度を向上させる。
論文 参考訳(メタデータ) (2024-02-08T03:00:50Z) - Learn from the Past: A Proxy Guided Adversarial Defense Framework with
Self Distillation Regularization [53.04697800214848]
敵対的訓練(AT)は、ディープラーニングモデルの堅牢性を固める上で重要な要素である。
AT方式は、目標モデルの防御のために直接反復的な更新を頼りにしており、不安定な訓練や破滅的なオーバーフィッティングといった障害に頻繁に遭遇する。
汎用プロキシガイド型防衛フレームワークLAST(bf Pbf astから学ぶ)を提案する。
論文 参考訳(メタデータ) (2023-10-19T13:13:41Z) - Enhanced LFTSformer: A Novel Long-Term Financial Time Series Prediction Model Using Advanced Feature Engineering and the DS Encoder Informer Architecture [0.8532753451809455]
本研究では,拡張LFTSformerと呼ばれる長期金融時系列の予測モデルを提案する。
このモデルは、いくつかの重要なイノベーションを通じて、自分自身を区別する。
さまざまなベンチマークストックマーケットデータセットに関するシステマティックな実験は、強化LFTSformerが従来の機械学習モデルより優れていることを示している。
論文 参考訳(メタデータ) (2023-10-03T08:37:21Z) - Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution [57.71199089609161]
長期的時系列予測(LTTF)は、風力発電計画など、多くのアプリケーションで需要が高まっている。
トランスフォーマーモデルは、高い計算自己認識機構のため、高い予測能力を提供するために採用されている。
LTTFの既存の手法を3つの面で区別する,Conformer という,効率的なTransformer ベースモデルを提案する。
論文 参考訳(メタデータ) (2023-01-05T13:59:29Z) - An Attention Free Long Short-Term Memory for Time Series Forecasting [0.0]
本研究では,より効率的なフレームワークであるアテンションフリー機構を用いた時系列予測に着目し,時系列予測のための新しいアーキテクチャを提案する。
本研究では,無注意LSTM層を用いて,条件分散予測のための線形モデルを克服するアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-09-20T08:23:49Z) - Your Autoregressive Generative Model Can be Better If You Treat It as an
Energy-Based One [83.5162421521224]
本稿では,自己回帰生成モデルの学習のための独自のE-ARM法を提案する。
E-ARMは、よく設計されたエネルギーベースの学習目標を活用する。
我々は、E-ARMを効率的に訓練でき、露光バイアス問題を緩和できることを示した。
論文 参考訳(メタデータ) (2022-06-26T10:58:41Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
本稿では,観測力学を強制線形系としてモデル化した新しい負荷予測手法を提案する。
固有線型力学の利用は、解釈可能性やパーシモニーの観点から、多くの望ましい性質を提供することを示す。
電力グリッドからの負荷データを用いたテストケースの結果が提示される。
論文 参考訳(メタデータ) (2020-10-08T20:25:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。