Nested Deep Learning Model Towards A Foundation Model for Brain Signal Data
- URL: http://arxiv.org/abs/2410.03191v2
- Date: Wed, 9 Oct 2024 08:29:54 GMT
- Title: Nested Deep Learning Model Towards A Foundation Model for Brain Signal Data
- Authors: Fangyi Wei, Jiajie Mo, Kai Zhang, Haipeng Shen, Srikantan Nagarajan, Fei Jiang,
- Abstract summary: This paper introduces a novel Nested Deep Learning (NDL) framework designed to overcome limitations of current methods.
NDL applies a weighted combination of signals across all channels, ensuring adaptability to different channel setups.
The results show that NDL improves prediction accuracy, supports cross-modality data integration, and can be fine-tuned for various neurophysiological applications.
- Score: 12.98830356097411
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Epilepsy affects over 50 million people globally, with EEG/MEG-based spike detection playing a crucial role in diagnosis and treatment. Manual spike identification is time-consuming and requires specialized training, limiting the number of professionals available to analyze EEG/MEG data. To address this, various algorithmic approaches have been developed. However, current methods face challenges in handling varying channel configurations and in identifying the specific channels where spikes originate. This paper introduces a novel Nested Deep Learning (NDL) framework designed to overcome these limitations. NDL applies a weighted combination of signals across all channels, ensuring adaptability to different channel setups, and allows clinicians to identify key channels more accurately. Through theoretical analysis and empirical validation on real EEG/MEG datasets, NDL demonstrates superior accuracy in spike detection and channel localization compared to traditional methods. The results show that NDL improves prediction accuracy, supports cross-modality data integration, and can be fine-tuned for various neurophysiological applications.
Related papers
- Benchmarking Reliability of Deep Learning Models for Pathological Gait Classification [2.1548132286330453]
Researchers have recently sought to leverage advances in machine learning algorithms to detect symptoms of altered gait.
This paper analyzes existing approaches to identify gaps inhibiting translation.
We propose our strong baseline called Asynchronous Multi-Stream Graph Convolutional Network (AMS-GCN) that can reliably differentiate multiple categories of pathological gaits.
arXiv Detail & Related papers (2024-09-20T16:47:45Z) - Enhancing Angular Resolution via Directionality Encoding and Geometric Constraints in Brain Diffusion Tensor Imaging [70.66500060987312]
Diffusion-weighted imaging (DWI) is a type of Magnetic Resonance Imaging (MRI) technique sensitised to the diffusivity of water molecules.
This work proposes DirGeo-DTI, a deep learning-based method to estimate reliable DTI metrics even from a set of DWIs acquired with the minimum theoretical number (6) of gradient directions.
arXiv Detail & Related papers (2024-09-11T11:12:26Z) - Reliable Deep Diffusion Tensor Estimation: Rethinking the Power of Data-Driven Optimization Routine [17.516054970588137]
This work introduces a data-driven optimization-based method termed DoDTI.
The proposed method attains state-of-the-art performance in DTI parameter estimation.
Notably, it demonstrates superior generalization, accuracy, and efficiency, rendering it highly reliable for widespread application in the field.
arXiv Detail & Related papers (2024-09-04T07:35:12Z) - Topological Feature Search Method for Multichannel EEG: Application in ADHD classification [13.381770446807016]
Topological Data Analysis offers a novel perspective for ADHD classification.
This paper presents an enhanced TDA approach applicable to multi-channel EEG in ADHD.
Results demonstrate that the accuracy, sensitivity, and specificity reach 78.27%, 80.62%, and 75.63%, respectively.
arXiv Detail & Related papers (2024-04-10T01:37:41Z) - Physics-informed and Unsupervised Riemannian Domain Adaptation for Machine Learning on Heterogeneous EEG Datasets [53.367212596352324]
We propose an unsupervised approach leveraging EEG signal physics.
We map EEG channels to fixed positions using field, source-free domain adaptation.
Our method demonstrates robust performance in brain-computer interface (BCI) tasks and potential biomarker applications.
arXiv Detail & Related papers (2024-03-07T16:17:33Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
Deep learning models have shown promise for automatically segmenting MS lesions, but the scarcity of accurately annotated data hinders progress in this area.
We introduce a Decoupled Hard Label Correction (DHLC) strategy that considers the imbalanced distribution and fuzzy boundaries of MS lesions.
We also introduce a Centrally Enhanced Label Correction (CELC) strategy, which leverages the aggregated central model as a correction teacher for all sites.
arXiv Detail & Related papers (2023-08-31T00:36:10Z) - A Novel TSK Fuzzy System Incorporating Multi-view Collaborative Transfer
Learning for Personalized Epileptic EEG Detection [20.11589208667256]
We propose a TSK fuzzy system-based epilepsy detection algorithm that integrates multi-view collaborative transfer learning.
The proposed method has the potential to detect epileptic EEG signals effectively.
arXiv Detail & Related papers (2021-11-11T12:15:55Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
Clinical diagnosis, which aims to assign diagnosis codes for a patient based on the clinical note, plays an essential role in clinical decision-making.
We propose a novel framework to combine the inheritance-guided hierarchical assignment and co-occurrence graph propagation for clinical automatic diagnosis.
arXiv Detail & Related papers (2021-01-27T13:16:51Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z) - Multi-Scale Neural network for EEG Representation Learning in BCI [2.105172041656126]
We propose a novel deep multi-scale neural network that discovers feature representations in multiple frequency/time ranges.
By representing EEG signals withspectral-temporal information, the proposed method can be utilized for diverse paradigms.
arXiv Detail & Related papers (2020-03-02T04:06:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.