Sm: enhanced localization in Multiple Instance Learning for medical imaging classification
- URL: http://arxiv.org/abs/2410.03276v2
- Date: Thu, 10 Oct 2024 19:19:34 GMT
- Title: Sm: enhanced localization in Multiple Instance Learning for medical imaging classification
- Authors: Francisco M. Castro-Macías, Pablo Morales-Álvarez, Yunan Wu, Rafael Molina, Aggelos K. Katsaggelos,
- Abstract summary: Multiple Instance Learning (MIL) is widely used in medical imaging classification to reduce the labeling effort.
We propose a novel, principled, and flexible mechanism to model local dependencies.
Our module leads to state-of-the-art performance in localization while being competitive or superior in classification.
- Score: 11.727293641333713
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multiple Instance Learning (MIL) is widely used in medical imaging classification to reduce the labeling effort. While only bag labels are available for training, one typically seeks predictions at both bag and instance levels (classification and localization tasks, respectively). Early MIL methods treated the instances in a bag independently. Recent methods account for global and local dependencies among instances. Although they have yielded excellent results in classification, their performance in terms of localization is comparatively limited. We argue that these models have been designed to target the classification task, while implications at the instance level have not been deeply investigated. Motivated by a simple observation -- that neighboring instances are likely to have the same label -- we propose a novel, principled, and flexible mechanism to model local dependencies. It can be used alone or combined with any mechanism to model global dependencies (e.g., transformers). A thorough empirical validation shows that our module leads to state-of-the-art performance in localization while being competitive or superior in classification. Our code is at https://github.com/Franblueee/SmMIL.
Related papers
- Rethinking Multiple Instance Learning: Developing an Instance-Level Classifier via Weakly-Supervised Self-Training [14.16923025335549]
Multiple instance learning (MIL) problem is currently solved from either bag-classification or instance-classification perspective.
We formulate MIL as a semi-supervised instance classification problem, so that all the labeled and unlabeled instances can be fully utilized.
We propose a weakly-supervised self-training method, in which we utilize the positive bag labels to construct a global constraint.
arXiv Detail & Related papers (2024-08-09T01:53:41Z) - Learning Invariant Molecular Representation in Latent Discrete Space [52.13724532622099]
We propose a new framework for learning molecular representations that exhibit invariance and robustness against distribution shifts.
Our model achieves stronger generalization against state-of-the-art baselines in the presence of various distribution shifts.
arXiv Detail & Related papers (2023-10-22T04:06:44Z) - Rethinking Multiple Instance Learning for Whole Slide Image Classification: A Good Instance Classifier is All You Need [18.832471712088353]
We propose an instance-level weakly supervised contrastive learning algorithm for the first time under the MIL setting.
We also propose an accurate pseudo label generation method through prototype learning.
arXiv Detail & Related papers (2023-07-05T12:44:52Z) - Intra-class Adaptive Augmentation with Neighbor Correction for Deep
Metric Learning [99.14132861655223]
We propose a novel intra-class adaptive augmentation (IAA) framework for deep metric learning.
We reasonably estimate intra-class variations for every class and generate adaptive synthetic samples to support hard samples mining.
Our method significantly improves and outperforms the state-of-the-art methods on retrieval performances by 3%-6%.
arXiv Detail & Related papers (2022-11-29T14:52:38Z) - Multiple Instance Learning via Iterative Self-Paced Supervised
Contrastive Learning [22.07044031105496]
Learning representations for individual instances when only bag-level labels are available is a challenge in multiple instance learning (MIL)
We propose a novel framework, Iterative Self-paced Supervised Contrastive Learning for MIL Representations (ItS2CLR)
It improves the learned representation by exploiting instance-level pseudo labels derived from the bag-level labels.
arXiv Detail & Related papers (2022-10-17T21:43:32Z) - Training image classifiers using Semi-Weak Label Data [26.04162590798731]
In Multiple Instance learning (MIL), weak labels are provided at the bag level with only presence/absence information known.
This paper introduces a novel semi-weak label learning paradigm as a middle ground to mitigate the problem.
We propose a two-stage framework to address the problem of learning from semi-weak labels.
arXiv Detail & Related papers (2021-03-19T03:06:07Z) - Cooperative Bi-path Metric for Few-shot Learning [50.98891758059389]
We make two contributions to investigate the few-shot classification problem.
We report a simple and effective baseline trained on base classes in the way of traditional supervised learning.
We propose a cooperative bi-path metric for classification, which leverages the correlations between base classes and novel classes to further improve the accuracy.
arXiv Detail & Related papers (2020-08-10T11:28:52Z) - Unsupervised Feature Learning by Cross-Level Instance-Group
Discrimination [68.83098015578874]
We integrate between-instance similarity into contrastive learning, not directly by instance grouping, but by cross-level discrimination.
CLD effectively brings unsupervised learning closer to natural data and real-world applications.
New state-of-the-art on self-supervision, semi-supervision, and transfer learning benchmarks, and beats MoCo v2 and SimCLR on every reported performance.
arXiv Detail & Related papers (2020-08-09T21:13:13Z) - UniT: Unified Knowledge Transfer for Any-shot Object Detection and
Segmentation [52.487469544343305]
Methods for object detection and segmentation rely on large scale instance-level annotations for training.
We propose an intuitive and unified semi-supervised model that is applicable to a range of supervision.
arXiv Detail & Related papers (2020-06-12T22:45:47Z) - Dual-stream Maximum Self-attention Multi-instance Learning [11.685285490589981]
Multi-instance learning (MIL) is a form of weakly supervised learning where a single class label is assigned to a bag of instances while the instance-level labels are not available.
We propose a dual-stream maximum self-attention MIL model (DSMIL) parameterized by neural networks.
Our method achieves superior performance compared to the best MIL methods and demonstrates state-of-the-art performance on benchmark MIL datasets.
arXiv Detail & Related papers (2020-06-09T22:44:58Z) - Weakly-Supervised Action Localization with Expectation-Maximization
Multi-Instance Learning [82.41415008107502]
Weakly-supervised action localization requires training a model to localize the action segments in the video given only video level action label.
It can be solved under the Multiple Instance Learning (MIL) framework, where a bag (video) contains multiple instances (action segments)
We show that our EM-MIL approach more accurately models both the learning objective and the MIL assumptions.
arXiv Detail & Related papers (2020-03-31T23:36:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.