Statistical analysis of quantum trajectories in dissipative Landau-Zener model
- URL: http://arxiv.org/abs/2410.03582v2
- Date: Mon, 4 Nov 2024 10:25:23 GMT
- Title: Statistical analysis of quantum trajectories in dissipative Landau-Zener model
- Authors: Laleh Memarzadeh, Rosario Fazio,
- Abstract summary: We present statistics of quantum jumps in the two-level system with landau-Zener Hamiltonian that undergoes a Markovian process.
Also, we show the role of bath temperature, coupling strength to the environment, and spin-coupling directions on the statistics of quantum jumps.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present statistics of quantum jumps in the two-level system with landau-Zener Hamiltonian that undergoes a Markovian process. For the Landau-Zener model, which is successful in simulating adiabatic/non-adiabatic evolution and quantum annealing, we consider two types of dissipation. In the first one, the jump operators project states to the initial ground state and excited state of the Hamiltonian at $t\to -\infty$. In the second type, the jump operators project to the instantaneous eigenstates of the Hamiltonian. By the quantum trajectories approach, we present the probability of the number of jumps in adiabatic and non-adiabatic regimes for both models. Furthermore, we demonstrate the statistics of jumps in time intervals of the evolutions. Also, we show the role of bath temperature, coupling strength to the environment, and spin-coupling directions on the statistics of quantum jumps.
Related papers
- Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Hilbert Space Fragmentation in Open Quantum Systems [0.7412445894287709]
We investigate the phenomenon of Hilbert space fragmentation (HSF) in open quantum systems.
We find that it can stabilize highly entangled steady states.
arXiv Detail & Related papers (2023-05-05T18:00:06Z) - Topological extension including quantum jump [4.681851642601744]
We study the Su-Schrieffer-Heeger model with collective loss and gain from a topological perspective.
Our study provides a qualitative analysis of the impact of quantum jumping terms and reveals their unique role in quantum systems.
arXiv Detail & Related papers (2022-11-08T13:26:57Z) - Thermodynamics of quantum-jump trajectories of open quantum systems
subject to stochastic resetting [0.0]
We consider Markovian open quantum systems subject to resetting.
We show that the dynamics is non-Markovian and has the form of a generalized Lindblad equation.
arXiv Detail & Related papers (2021-12-09T18:11:02Z) - Effective Theory for the Measurement-Induced Phase Transition of Dirac
Fermions [0.0]
A wave function exposed to measurements undergoes pure state dynamics.
For many-particle systems, the competition of these different elements of dynamics can give rise to a scenario similar to quantum phase transitions.
A key finding is that this field theory decouples into one set of degrees of freedom that heats up indefinitely.
arXiv Detail & Related papers (2021-02-16T19:00:00Z) - Mesoscopic quantum superposition states of weakly-coupled matter-wave
solitons [58.720142291102135]
We establish quantum features of an atomic soliton Josephson junction (SJJ) device.
We show that the SJJ-model in quantum domain exhibits unusual features due to its effective nonlinear strength proportional to the square of total particle number.
We have shown that the obtained quantum state is more resistant to few particle losses from the condensates if tiny components of entangled Fock states are present.
arXiv Detail & Related papers (2020-11-26T09:26:19Z) - Assessment of weak-coupling approximations on a driven two-level system
under dissipation [58.720142291102135]
We study a driven qubit through the numerically exact and non-perturbative method known as the Liouville-von equation with dissipation.
We propose a metric that may be used in experiments to map the regime of validity of the Lindblad equation in predicting the steady state of the driven qubit.
arXiv Detail & Related papers (2020-11-11T22:45:57Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Anyon Quantum Transport and Noise away from Equilibrium [0.0]
We investigate the quantum transport of anyons in one space dimension.
A non-equilibrium representation of the physical observables is constructed.
The dependence of the relative noise power on the statistical parameter is established.
arXiv Detail & Related papers (2020-05-27T12:33:09Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z) - Jumptime unraveling of Markovian open quantum systems [68.8204255655161]
We introduce jumptime unraveling as a distinct description of open quantum systems.
quantum jump trajectories emerge, physically, from continuous quantum measurements.
We demonstrate that quantum trajectories can also be ensemble-averaged at specific jump counts.
arXiv Detail & Related papers (2020-01-24T09:35:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.