How Discrete and Continuous Diffusion Meet: Comprehensive Analysis of Discrete Diffusion Models via a Stochastic Integral Framework
- URL: http://arxiv.org/abs/2410.03601v1
- Date: Fri, 4 Oct 2024 16:59:29 GMT
- Title: How Discrete and Continuous Diffusion Meet: Comprehensive Analysis of Discrete Diffusion Models via a Stochastic Integral Framework
- Authors: Yinuo Ren, Haoxuan Chen, Grant M. Rotskoff, Lexing Ying,
- Abstract summary: We propose a comprehensive framework for the error analysis of discrete diffusion models based on L'evy-type integrals.
Our framework unifies and strengthens the current theoretical results on discrete diffusion models.
- Score: 11.71206628091551
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Discrete diffusion models have gained increasing attention for their ability to model complex distributions with tractable sampling and inference. However, the error analysis for discrete diffusion models remains less well-understood. In this work, we propose a comprehensive framework for the error analysis of discrete diffusion models based on L\'evy-type stochastic integrals. By generalizing the Poisson random measure to that with a time-independent and state-dependent intensity, we rigorously establish a stochastic integral formulation of discrete diffusion models and provide the corresponding change of measure theorems that are intriguingly analogous to It\^o integrals and Girsanov's theorem for their continuous counterparts. Our framework unifies and strengthens the current theoretical results on discrete diffusion models and obtains the first error bound for the $\tau$-leaping scheme in KL divergence. With error sources clearly identified, our analysis gives new insight into the mathematical properties of discrete diffusion models and offers guidance for the design of efficient and accurate algorithms for real-world discrete diffusion model applications.
Related papers
- Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
We present the first performance guarantee with explicit dimensional general score-mismatched diffusion samplers.
We show that score mismatches result in an distributional bias between the target and sampling distributions, proportional to the accumulated mismatch between the target and training distributions.
This result can be directly applied to zero-shot conditional samplers for any conditional model, irrespective of measurement noise.
arXiv Detail & Related papers (2024-10-17T16:42:12Z) - Convergence of Score-Based Discrete Diffusion Models: A Discrete-Time Analysis [56.442307356162864]
We study the theoretical aspects of score-based discrete diffusion models under the Continuous Time Markov Chain (CTMC) framework.
We introduce a discrete-time sampling algorithm in the general state space $[S]d$ that utilizes score estimators at predefined time points.
Our convergence analysis employs a Girsanov-based method and establishes key properties of the discrete score function.
arXiv Detail & Related papers (2024-10-03T09:07:13Z) - Unveil Conditional Diffusion Models with Classifier-free Guidance: A Sharp Statistical Theory [87.00653989457834]
Conditional diffusion models serve as the foundation of modern image synthesis and find extensive application in fields like computational biology and reinforcement learning.
Despite the empirical success, theory of conditional diffusion models is largely missing.
This paper bridges the gap by presenting a sharp statistical theory of distribution estimation using conditional diffusion models.
arXiv Detail & Related papers (2024-03-18T17:08:24Z) - Theoretical Insights for Diffusion Guidance: A Case Study for Gaussian
Mixture Models [59.331993845831946]
Diffusion models benefit from instillation of task-specific information into the score function to steer the sample generation towards desired properties.
This paper provides the first theoretical study towards understanding the influence of guidance on diffusion models in the context of Gaussian mixture models.
arXiv Detail & Related papers (2024-03-03T23:15:48Z) - Convergence Analysis of Discrete Diffusion Model: Exact Implementation
through Uniformization [17.535229185525353]
We introduce an algorithm leveraging the uniformization of continuous Markov chains, implementing transitions on random time points.
Our results align with state-of-the-art achievements for diffusion models in $mathbbRd$ and further underscore the advantages of discrete diffusion models in comparison to the $mathbbRd$ setting.
arXiv Detail & Related papers (2024-02-12T22:26:52Z) - Generative Modeling of Discrete Joint Distributions by E-Geodesic Flow
Matching on Assignment Manifolds [0.8594140167290099]
General non-factorizing discrete distributions can be approximated by embedding the submanifold into a the meta-simplex of all joint discrete distributions.
Efficient training of the generative model is demonstrated by matching the flow of geodesics of factorizing discrete distributions.
arXiv Detail & Related papers (2024-02-12T17:56:52Z) - Eliminating Lipschitz Singularities in Diffusion Models [51.806899946775076]
We show that diffusion models frequently exhibit the infinite Lipschitz near the zero point of timesteps.
This poses a threat to the stability and accuracy of the diffusion process, which relies on integral operations.
We propose a novel approach, dubbed E-TSDM, which eliminates the Lipschitz of the diffusion model near zero.
arXiv Detail & Related papers (2023-06-20T03:05:28Z) - Diffusion Models are Minimax Optimal Distribution Estimators [49.47503258639454]
We provide the first rigorous analysis on approximation and generalization abilities of diffusion modeling.
We show that when the true density function belongs to the Besov space and the empirical score matching loss is properly minimized, the generated data distribution achieves the nearly minimax optimal estimation rates.
arXiv Detail & Related papers (2023-03-03T11:31:55Z) - Information-Theoretic Diffusion [18.356162596599436]
Denoising diffusion models have spurred significant gains in density modeling and image generation.
We introduce a new mathematical foundation for diffusion models inspired by classic results in information theory.
arXiv Detail & Related papers (2023-02-07T23:03:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.