論文の概要: Post-Quantum Cryptography Anonymous Scheme -- PQCWC: Post-Quantum Cryptography Winternitz-Chen
- arxiv url: http://arxiv.org/abs/2410.03678v1
- Date: Fri, 20 Sep 2024 00:14:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 20:48:16.543247
- Title: Post-Quantum Cryptography Anonymous Scheme -- PQCWC: Post-Quantum Cryptography Winternitz-Chen
- Title(参考訳): Post-Quantum Cryptography Anonymous Scheme -- PQCWC: Post-Quantum Cryptography Winternitz-Chen
- Authors: Abel C. H. Chen,
- Abstract要約: 量子後暗号アルゴリズムは主に格子ベースの暗号とハッシュベースの暗号に基づいている。
本研究では,PQCWC(Post-Quantum Cryptography Winternitz-Chen)匿名方式を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As quantum computing technology matures, it poses a threat to the security of mainstream asymmetric cryptographic methods. In response, the National Institute of Standards and Technology released the final version of post-quantum cryptographic (PQC) algorithm standards in August 2024. These post-quantum cryptographic algorithms are primarily based on lattice-based and hash-based cryptography. Therefore, this study proposes the Post-Quantum Cryptography Winternitz-Chen (PQCWC) anonymous scheme, aimed at exploring the design of anonymous schemes based on PQC for future applications in privacy protection. The anonymous scheme designed in this study is mainly built on the Winternitz signature scheme, which can prevent the original public key from being exposed in the certificate. Furthermore, the PQCWC anonymous scheme integrates the butterfly key expansion mechanism, proposing the first hash-based butterfly key expansion mechanism in the world, achieving anonymity for both the registration authority and the certificate authority, thereby fully protecting privacy. In the experimental environment, this study compares various hash algorithms, including Secure Hash Algorithm-1 (SHA-1), the SHA-2 series, the SHA-3 series, and the BLAKE series. The results demonstrate that the proposed anonymous scheme can achieve anonymity without increasing key length, signature length, key generation time, signature generation time, or signature verification time.
- Abstract(参考訳): 量子コンピューティング技術が成熟するにつれて、主流の非対称暗号法のセキュリティに脅威をもたらす。
これに応えて、National Institute of Standards and Technologyは2024年8月にポスト量子暗号(PQC)アルゴリズムの最終版をリリースした。
これらの量子後暗号アルゴリズムは主に格子ベースの暗号とハッシュベースの暗号に基づいている。
そこで本研究では,プライバシ保護における将来的な応用に向けたPQCに基づく匿名スキームの設計を検討することを目的とした,PQCWC(Post-Quantum Cryptography Winternitz-Chen)匿名スキームを提案する。
この研究で設計された匿名のスキームは主にウィンターニッツ署名スキームに基づいており、これは元の公開鍵が証明書に暴露されるのを防ぐことができる。
さらに、PQCWC匿名スキームは、バタフライキー拡張機構を統合し、世界で初めてハッシュベースのバタフライキー拡張機構を提案し、登録局と認証局の両方の匿名性を達成し、プライバシーを完全に保護する。
実験環境では,Secure Hash Algorithm-1(SHA-1),SHA-2シリーズ,SHA-3シリーズ,BLAKEシリーズなど,さまざまなハッシュアルゴリズムを比較した。
提案手法は,鍵長,署名長,鍵生成時間,署名生成時間,署名検証時間を増大させることなく,匿名性を実現することができることを示す。
関連論文リスト
- Multi-Layered Security System: Integrating Quantum Key Distribution with Classical Cryptography to Enhance Steganographic Security [0.0]
本稿では,量子鍵分布(QKD)と古典的暗号技術を統合する新しい暗号システムを提案する。
提案手法は,E91QKDプロトコルを利用して,通信相手間で共有秘密鍵を生成する。
このキーは、Secure Hash Algorithm(SHA)を使用してハッシュされ、固定長の高エントロピーキーを提供する。
論文 参考訳(メタデータ) (2024-08-13T15:20:29Z) - The Latency Price of Threshold Cryptosystem in Blockchains [52.359230560289745]
本稿では,Byzantine-fault Tolerant(BFT)コンセンサスプロトコルを用いた,しきい値暗号とブロックチェーンのクラス間の相互作用について検討する。
しきい値暗号システムに対する既存のアプローチは、しきい値暗号プロトコルを実行するための少なくとも1つのメッセージ遅延の遅延オーバーヘッドを導入している。
しきい値が狭いブロックチェーンネイティブのしきい値暗号システムに対して,このオーバーヘッドを取り除く機構を提案する。
論文 参考訳(メタデータ) (2024-07-16T20:53:04Z) - Coding-Based Hybrid Post-Quantum Cryptosystem for Non-Uniform Information [53.85237314348328]
我々は、新しいハイブリッドユニバーサルネットワーク符号化暗号(NU-HUNCC)を導入する。
NU-HUNCCは,リンクのサブセットにアクセス可能な盗聴者に対して,個別に情報理論的に保護されていることを示す。
論文 参考訳(メタデータ) (2024-02-13T12:12:39Z) - The Security Performance Analysis of Blockchain System Based on Post-Quantum Cryptography -- A Case Study of Cryptocurrency Exchanges [0.0]
量子後暗号(PQC)ベースのブロックチェーンシステムを提案する。
ウォレットの生成、シグネチャの生成、シグネチャの検証において、PQCデジタルシグネチャアルゴリズムであるDilithiumアルゴリズムの効率は、現在のブロックチェーンシステムにおけるECDSAよりも優れている。
論文 参考訳(メタデータ) (2024-01-23T05:21:58Z) - QKD Entity Source Authentication: Defense-in-Depth for Post Quantum
Cryptography [0.0]
量子鍵分布(QKD)は1984年12月にチャールズ・ベネットとジル・ブラザードによって考案された。
NISTは、現在の暗号化標準を置き換えるために、一連の量子耐性アルゴリズムを標準化するプログラムを開始した。
本研究の目的は,ハイブリッドQKD/PQCディフェンス・イン・ディープス戦略の適合性を検討することである。
論文 参考訳(メタデータ) (2023-11-17T16:43:32Z) - Revocable Cryptography from Learning with Errors [61.470151825577034]
我々は、量子力学の非閉鎖原理に基づいて、キー呼び出し機能を備えた暗号スキームを設計する。
我々は、シークレットキーが量子状態として表現されるスキームを、シークレットキーが一度ユーザから取り消されたら、それらが以前と同じ機能を実行する能力を持たないことを保証して検討する。
論文 参考訳(メタデータ) (2023-02-28T18:58:11Z) - A Variational Quantum Attack for AES-like Symmetric Cryptography [69.80357450216633]
古典的AES様対称暗号のための変分量子攻撃アルゴリズム(VQAA)を提案する。
VQAAでは、既知の暗号文は、正規グラフを通して構築されるハミルトンの基底状態として符号化される。
論文 参考訳(メタデータ) (2022-05-07T03:15:15Z) - Quantum Proofs of Deletion for Learning with Errors [91.3755431537592]
完全同型暗号方式として, 完全同型暗号方式を初めて構築する。
我々の主要な技術要素は、量子証明器が古典的検証器に量子状態の形でのLearning with Errors分布からのサンプルが削除されたことを納得させる対話的プロトコルである。
論文 参考訳(メタデータ) (2022-03-03T10:07:32Z) - A Survey on Code-Based Cryptography [0.40964539027092917]
有能な量子コンピュータは、現在採用されている非対称暗号システムを全て破壊することができる。
NISTは2016年に、公開鍵暗号(PKE)スキーム、鍵カプセル化機構(KEM)、デジタル署名スキームの標準化プロセスを開始した。
2023年、NISTはポストクォータム署名を新たに要求した。
論文 参考訳(メタデータ) (2022-01-18T16:46:42Z) - Quantum-access security of the Winternitz one-time signature scheme [5.156484100374058]
攻撃者が秘密鍵機能への重ね合わせアクセスを許可される量子アクセスセキュリティは、基本的なセキュリティモデルである。
我々は、Alagicらによる量子ランダムオラクルモデル(QROM)におけるLamportワンタイム署名スキーム(OTS)の量子アクセスセキュリティ解析を再考し、そのギャップを埋める(Eurocrypt 2020)。
論文 参考訳(メタデータ) (2021-03-23T10:55:00Z) - Backflash Light as a Security Vulnerability in Quantum Key Distribution
Systems [77.34726150561087]
量子鍵分布(QKD)システムのセキュリティ脆弱性について概説する。
我々は主に、盗聴攻撃の源となるバックフラッシュ光(backflash light)と呼ばれる特定の効果に焦点を当てる。
論文 参考訳(メタデータ) (2020-03-23T18:23:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。