Distributed AI Platform for the 6G RAN
- URL: http://arxiv.org/abs/2410.03747v1
- Date: Tue, 1 Oct 2024 18:35:25 GMT
- Title: Distributed AI Platform for the 6G RAN
- Authors: Ganesh Ananthanarayanan, Xenofon Foukas, Bozidar Radunovic, Yongguang Zhang,
- Abstract summary: AI emerges as a key enabler in solving complex RAN problems.
Existing approaches in addressing these challenges are inadequate for realizing the vision of a truly AI-native 6G network.
Motivated by this lack of solutions, it proposes a generic distributed AI platform architecture.
- Score: 3.1924413019103692
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cellular Radio Access Networks (RANs) are rapidly evolving towards 6G, driven by the need to reduce costs and introduce new revenue streams for operators and enterprises. In this context, AI emerges as a key enabler in solving complex RAN problems spanning both the management and application domains. Unfortunately, and despite the undeniable promise of AI, several practical challenges still remain, hindering the widespread adoption of AI applications in the RAN space. This article attempts to shed light to these challenges and argues that existing approaches in addressing them are inadequate for realizing the vision of a truly AI-native 6G network. Motivated by this lack of solutions, it proposes a generic distributed AI platform architecture, tailored to the needs of an AI-native RAN and discusses its alignment with ongoing standardization efforts.
Related papers
- AI/ML Life Cycle Management for Interoperable AI Native RAN [50.61227317567369]
Artificial intelligence (AI) and machine learning (ML) models are rapidly permeating the 5G Radio Access Network (RAN)<n>These developments lay the foundation for AI-native transceivers as a key enabler for 6G.
arXiv Detail & Related papers (2025-07-24T16:04:59Z) - Towards AI-Native RAN: An Operator's Perspective of 6G Day 1 Standardization [21.71207441688328]
6G shall incorporate AI from the onset to address its complexity and support ubiquitous AI applications.<n>This paper explores the design and standardization principles of AI-Native radio access networks (RAN) for 6G.<n>We present its three essential capabilities to shed some light on the standardization direction; namely, AI-driven RAN processing/optimization/automation, reliable AI lifecycle management (LCM) and AI-as-a-Service (AI-as-a-Service)<n>For validation, a large-scale field trial with over 5000 5G-A base stations have been built and delivered significant improvements
arXiv Detail & Related papers (2025-07-11T08:21:08Z) - Beyond Connectivity: An Open Architecture for AI-RAN Convergence in 6G [20.07205081315289]
This article presents a novel converged O-RAN and AI-RAN architecture that unifies orchestration and management of both telecommunications and AI workloads on shared infrastructure.<n>We introduce two key architectural innovations: (i) the AI-RAN Orchestrator, which extends the O-RAN Service Management and Orchestration (SMO) to enable integrated resource and allocation across RAN and AI workloads; and (ii) AI-RAN sites that provide distributed edge AI platforms with real-time processing capabilities.
arXiv Detail & Related papers (2025-07-09T14:49:11Z) - AI2Agent: An End-to-End Framework for Deploying AI Projects as Autonomous Agents [15.802600809497097]
This paper introduces AI2Agent, an end-to-end framework that automates AI project deployment through guideline-driven execution.
We conducted experiments on 30 AI deployment cases, covering TTS, text-to-image generation, image editing, and other AI applications.
Results show that AI2Agent significantly reduces deployment time and improves success rates.
arXiv Detail & Related papers (2025-03-31T10:58:34Z) - Large-Scale AI in Telecom: Charting the Roadmap for Innovation, Scalability, and Enhanced Digital Experiences [212.5544743797899]
Large Telecom Models (LTMs) are tailored AI models designed to address the complex challenges faced by modern telecom networks.
The paper covers a wide range of topics, from the architecture and deployment strategies of LTMs to their applications in network management, resource allocation, and optimization.
arXiv Detail & Related papers (2025-03-06T07:53:24Z) - Intelligent Mobile AI-Generated Content Services via Interactive Prompt Engineering and Dynamic Service Provisioning [55.641299901038316]
AI-generated content can organize collaborative Mobile AIGC Service Providers (MASPs) at network edges to provide ubiquitous and customized content for resource-constrained users.
Such a paradigm faces two significant challenges: 1) raw prompts often lead to poor generation quality due to users' lack of experience with specific AIGC models, and 2) static service provisioning fails to efficiently utilize computational and communication resources.
We develop an interactive prompt engineering mechanism that leverages a Large Language Model (LLM) to generate customized prompt corpora and employs Inverse Reinforcement Learning (IRL) for policy imitation.
arXiv Detail & Related papers (2025-02-17T03:05:20Z) - Overview of AI and Communication for 6G Network: Fundamentals, Challenges, and Future Research Opportunities [148.601430677814]
This paper presents a comprehensive overview of AI and communication for 6G networks.
We first review the driving factors behind incorporating AI into wireless communications, as well as the vision for the convergence of AI and 6G.
The discourse then transitions to a detailed exposition of the envisioned integration of AI within 6G networks.
arXiv Detail & Related papers (2024-12-19T05:36:34Z) - AI Flow at the Network Edge [58.31090055138711]
AI Flow is a framework that streamlines the inference process by jointly leveraging the heterogeneous resources available across devices, edge nodes, and cloud servers.
This article serves as a position paper for identifying the motivation, challenges, and principles of AI Flow.
arXiv Detail & Related papers (2024-11-19T12:51:17Z) - Adapting MLOps for Diverse In-Network Intelligence in 6G Era: Challenges and Solutions [4.183643697928412]
Machine learning operations (MLOps) offer a systematic approach to tackle these challenges.
We formulate three operational pipelines, namely reinforcement learning operations (RLOps), federated learning operations (FedOps) and generative AI operations (GenOps)
These pipelines form the foundation for seamlessly integrating various learning/inference capabilities into networks.
arXiv Detail & Related papers (2024-10-24T14:47:28Z) - Exploiting and Securing ML Solutions in Near-RT RIC: A Perspective of an xApp [9.199924426745948]
Open Radio Access Networks (O-RAN) are emerging as a disruptive technology.
O-RAN is attractive to network providers for beyond-5G and 6G deployments.
The ability to deploy custom applications, including Machine Learning (ML) solutions as xApps or rApps on the RAN Intelligent Controllers (RICs) has immense potential for network function and resource optimisation.
However, the openness, nascent standards, and distributed architecture of O-RAN and RICs introduce numerous vulnerabilities exploitable through multiple attack vectors.
arXiv Detail & Related papers (2024-06-18T06:12:57Z) - Decentralized Multi-Party Multi-Network AI for Global Deployment of 6G Wireless Systems [31.754166695074353]
This paper introduces the Decentralized Multi-Party, Multi-Network AI (DMMAI) framework for integrating AI into 6G networks deployed at scale.
DMMAI harmonizes AI-driven controls across diverse network platforms and thus facilitates networks that autonomously configure, monitor, and repair themselves.
Our approach explores multi-network orchestration and AI control integration, filling a critical gap in standardized frameworks for AI-driven coordination in 6G networks.
arXiv Detail & Related papers (2024-04-15T15:21:25Z) - Foundation Model Based Native AI Framework in 6G with Cloud-Edge-End
Collaboration [56.330705072736166]
We propose a 6G native AI framework based on foundation models, provide a customization approach for intent-aware PFM, and outline a novel cloud-edge-end collaboration paradigm.
As a practical use case, we apply this framework for orchestration, achieving the maximum sum rate within a wireless communication system.
arXiv Detail & Related papers (2023-10-26T15:19:40Z) - Causal Reasoning: Charting a Revolutionary Course for Next-Generation
AI-Native Wireless Networks [63.246437631458356]
Next-generation wireless networks (e.g., 6G) will be artificial intelligence (AI)-native.
This article introduces a novel framework for building AI-native wireless networks; grounded in the emerging field of causal reasoning.
We highlight several wireless networking challenges that can be addressed by causal discovery and representation.
arXiv Detail & Related papers (2023-09-23T00:05:39Z) - Artificial Intelligence Empowered Multiple Access for Ultra Reliable and
Low Latency THz Wireless Networks [76.89730672544216]
Terahertz (THz) wireless networks are expected to catalyze the beyond fifth generation (B5G) era.
To satisfy the ultra-reliability and low-latency demands of several B5G applications, novel mobility management approaches are required.
This article presents a holistic MAC layer approach that enables intelligent user association and resource allocation, as well as flexible and adaptive mobility management.
arXiv Detail & Related papers (2022-08-17T03:00:24Z) - Network and Physical Layer Attacks and countermeasures to AI-Enabled 6G
O-RAN [1.7811776494967646]
This paper examines the security implications of AI-driven 6G radio access networks (RANs)
The Open RAN (O-RAN) describes an industry-driven open architecture and interfaces for building next generation RANs with AI control.
arXiv Detail & Related papers (2021-06-01T16:36:37Z) - Artificial Intelligence for UAV-enabled Wireless Networks: A Survey [72.10851256475742]
Unmanned aerial vehicles (UAVs) are considered as one of the promising technologies for the next-generation wireless communication networks.
Artificial intelligence (AI) is growing rapidly nowadays and has been very successful.
We provide a comprehensive overview of some potential applications of AI in UAV-based networks.
arXiv Detail & Related papers (2020-09-24T07:11:31Z) - Towards Ubiquitous AI in 6G with Federated Learning [43.318721658647014]
Federated learning (FL) is an emerging distributed AI solution that enables data-driven AI solutions in heterogeneous and potentially massive-scale networks.
We propose an FL-based network architecture and discuss its potential for addressing some of the novel challenges expected in 6G.
arXiv Detail & Related papers (2020-04-26T13:05:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.