Towards AI-Native RAN: An Operator's Perspective of 6G Day 1 Standardization
- URL: http://arxiv.org/abs/2507.08403v1
- Date: Fri, 11 Jul 2025 08:21:08 GMT
- Title: Towards AI-Native RAN: An Operator's Perspective of 6G Day 1 Standardization
- Authors: Nan Li, Qi Sun, Lehan Wang, Xiaofei Xu, Jinri Huang, Chunhui Liu, Jing Gao, Yuhong Huang, Chih-Lin I,
- Abstract summary: 6G shall incorporate AI from the onset to address its complexity and support ubiquitous AI applications.<n>This paper explores the design and standardization principles of AI-Native radio access networks (RAN) for 6G.<n>We present its three essential capabilities to shed some light on the standardization direction; namely, AI-driven RAN processing/optimization/automation, reliable AI lifecycle management (LCM) and AI-as-a-Service (AI-as-a-Service)<n>For validation, a large-scale field trial with over 5000 5G-A base stations have been built and delivered significant improvements
- Score: 21.71207441688328
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial Intelligence/Machine Learning (AI/ML) has become the most certain and prominent feature of 6G mobile networks. Unlike 5G, where AI/ML was not natively integrated but rather an add-on feature over existing architecture, 6G shall incorporate AI from the onset to address its complexity and support ubiquitous AI applications. Based on our extensive mobile network operation and standardization experience from 2G to 5G, this paper explores the design and standardization principles of AI-Native radio access networks (RAN) for 6G, with a particular focus on its critical Day 1 architecture, functionalities and capabilities. We investigate the framework of AI-Native RAN and present its three essential capabilities to shed some light on the standardization direction; namely, AI-driven RAN processing/optimization/automation, reliable AI lifecycle management (LCM), and AI-as-a-Service (AIaaS) provisioning. The standardization of AI-Native RAN, in particular the Day 1 features, including an AI-Native 6G RAN architecture, were proposed. For validation, a large-scale field trial with over 5000 5G-A base stations have been built and delivered significant improvements in average air interface latency, root cause identification, and network energy consumption with the proposed architecture and the supporting AI functions. This paper aims to provide a Day 1 framework for 6G AI-Native RAN standardization design, balancing technical innovation with practical deployment.
Related papers
- Beyond Connectivity: An Open Architecture for AI-RAN Convergence in 6G [20.07205081315289]
This article presents a novel converged O-RAN and AI-RAN architecture that unifies orchestration and management of both telecommunications and AI workloads on shared infrastructure.<n>We introduce two key architectural innovations: (i) the AI-RAN Orchestrator, which extends the O-RAN Service Management and Orchestration (SMO) to enable integrated resource and allocation across RAN and AI workloads; and (ii) AI-RAN sites that provide distributed edge AI platforms with real-time processing capabilities.
arXiv Detail & Related papers (2025-07-09T14:49:11Z) - Intelligent Mobile AI-Generated Content Services via Interactive Prompt Engineering and Dynamic Service Provisioning [55.641299901038316]
AI-generated content can organize collaborative Mobile AIGC Service Providers (MASPs) at network edges to provide ubiquitous and customized content for resource-constrained users.<n>Such a paradigm faces two significant challenges: 1) raw prompts often lead to poor generation quality due to users' lack of experience with specific AIGC models, and 2) static service provisioning fails to efficiently utilize computational and communication resources.<n>We develop an interactive prompt engineering mechanism that leverages a Large Language Model (LLM) to generate customized prompt corpora and employs Inverse Reinforcement Learning (IRL) for policy imitation.
arXiv Detail & Related papers (2025-02-17T03:05:20Z) - Overview of AI and Communication for 6G Network: Fundamentals, Challenges, and Future Research Opportunities [148.601430677814]
This paper presents a comprehensive overview of AI and communication for 6G networks.<n>We first review the driving factors behind incorporating AI into wireless communications, as well as the vision for the convergence of AI and 6G.<n>The discourse then transitions to a detailed exposition of the envisioned integration of AI within 6G networks.
arXiv Detail & Related papers (2024-12-19T05:36:34Z) - Distributed AI Platform for the 6G RAN [3.1924413019103692]
AI emerges as a key enabler in solving complex RAN problems.
Existing approaches in addressing these challenges are inadequate for realizing the vision of a truly AI-native 6G network.
Motivated by this lack of solutions, it proposes a generic distributed AI platform architecture.
arXiv Detail & Related papers (2024-10-01T18:35:25Z) - Decentralized Multi-Party Multi-Network AI for Global Deployment of 6G Wireless Systems [31.754166695074353]
This paper introduces the Decentralized Multi-Party, Multi-Network AI (DMMAI) framework for integrating AI into 6G networks deployed at scale.
DMMAI harmonizes AI-driven controls across diverse network platforms and thus facilitates networks that autonomously configure, monitor, and repair themselves.
Our approach explores multi-network orchestration and AI control integration, filling a critical gap in standardized frameworks for AI-driven coordination in 6G networks.
arXiv Detail & Related papers (2024-04-15T15:21:25Z) - Toward 6G Native-AI Network: Foundation Model based Cloud-Edge-End Collaboration Framework [55.73948386625618]
We analyze the challenges of achieving 6G native AI from perspectives of data, AI models, and operational paradigm.<n>We propose a 6G native AI framework based on foundation models, provide an integration method for the expert knowledge, present the customization for two kinds of PFM, and outline a novel operational paradigm for the native AI framework.
arXiv Detail & Related papers (2023-10-26T15:19:40Z) - Zero-touch realization of Pervasive Artificial Intelligence-as-a-service
in 6G networks [8.500820283596774]
We introduce a novel platform architecture to deploy a zero-touch PAI-as-a-Service (PAI) in 6G networks supported by a blockchain-based smart system.
We present a proof of concept where we evaluate the ability of our proposed system to self-optimize and self-adapt to the dynamics of 6G networks.
arXiv Detail & Related papers (2023-07-21T10:02:24Z) - In-situ Model Downloading to Realize Versatile Edge AI in 6G Mobile
Networks [61.416494781759326]
In-situ model downloading aims to achieve transparent and real-time replacement of on-device AI models by downloading from an AI library in the network.
A key component of the presented framework is a set of techniques that dynamically compress a downloaded model at the depth-level, parameter-level, or bit-level.
We propose a 6G network architecture customized for deploying in-situ model downloading with the key feature of a three-tier (edge, local, and central) AI library.
arXiv Detail & Related papers (2022-10-07T13:41:15Z) - Towards Self-learning Edge Intelligence in 6G [143.1821636135413]
Edge intelligence, also called edge-native artificial intelligence (AI), is an emerging technological framework focusing on seamless integration of AI, communication networks, and mobile edge computing.
In this article, we identify the key requirements and challenges of edge-native AI in 6G.
arXiv Detail & Related papers (2020-10-01T02:16:40Z) - Federated Learning for 6G Communications: Challenges, Methods, and
Future Directions [71.31783903289273]
We introduce the integration of 6G and federated learning and provide potential federated learning applications for 6G.
We describe key technical challenges, the corresponding federated learning methods, and open problems for future research on federated learning in the context of 6G communications.
arXiv Detail & Related papers (2020-06-04T15:17:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.