論文の概要: Reward-RAG: Enhancing RAG with Reward Driven Supervision
- arxiv url: http://arxiv.org/abs/2410.03780v1
- Date: Thu, 3 Oct 2024 15:26:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 16:20:48.102257
- Title: Reward-RAG: Enhancing RAG with Reward Driven Supervision
- Title(参考訳): Reward-RAG: Reward-Driven SupervisionによるRAGの強化
- Authors: Thang Nguyen, Peter Chin, Yu-Wing Tai,
- Abstract要約: 本稿では、Reward-Driven Supervisionを通じて、Retrieval-Augmented Generation(RAG)モデルを強化するために設計された新しいアプローチであるReward-RAGを紹介する。
従来のRAG手法とは異なり,本手法ではCriticGPTを用いて検索情報を特定の領域に適応させ,専用報酬モデルを訓練する。
この報酬モデルは、RAGを微調整するための合成データセットを生成し、その出力を人間の好みとより密に一致させる。
- 参考スコア(独自算出の注目度): 43.66966457772646
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we introduce Reward-RAG, a novel approach designed to enhance the Retrieval-Augmented Generation (RAG) model through Reward-Driven Supervision. Unlike previous RAG methodologies, which focus on training language models (LMs) to utilize external knowledge retrieved from external sources, our method adapts retrieval information to specific domains by employing CriticGPT to train a dedicated reward model. This reward model generates synthesized datasets for fine-tuning the RAG encoder, aligning its outputs more closely with human preferences. The versatility of our approach allows it to be effectively applied across various domains through domain-specific fine-tuning. We evaluate Reward-RAG on publicly available benchmarks from multiple domains, comparing it to state-of-the-art methods. Our experimental results demonstrate significant improvements in performance, highlighting the effectiveness of Reward-RAG in improving the relevance and quality of generated responses. These findings underscore the potential of integrating reward models with RAG to achieve superior outcomes in natural language generation tasks.
- Abstract(参考訳): 本稿では、Reward-Driven Supervisionを通じて、Retrieval-Augmented Generation(RAG)モデルを強化するための新しいアプローチであるReward-RAGを紹介する。
学習言語モデル(LM)に着目した従来のRAG手法とは違って,本手法では,CriticGPTを用いて検索情報を特定の領域に適応させ,専用の報酬モデルを訓練する。
この報酬モデルは、RAGエンコーダを微調整するための合成データセットを生成し、その出力を人間の好みとより密に一致させる。
このアプローチの汎用性により、ドメイン固有の微調整を通じて、さまざまなドメインに効果的に適用できます。
Reward-RAGを複数のドメインから公開されているベンチマークで評価し、最先端の手法と比較した。
実験結果から,Reward-RAGの有効性が向上し,反応の関連性や品質が向上したことが明らかとなった。
これらの結果は、自然言語生成タスクにおいて優れた結果を得るために、報酬モデルとRAGを統合する可能性を示している。
関連論文リスト
- Chain-of-Retrieval Augmented Generation [72.06205327186069]
本稿では,o1-like RAGモデルを学習し,最終回答を生成する前に段階的に関連情報を抽出・推論する手法を提案する。
提案手法であるCoRAGは,進化状態に基づいて動的にクエリを再構成する。
論文 参考訳(メタデータ) (2025-01-24T09:12:52Z) - RAG-Reward: Optimizing RAG with Reward Modeling and RLHF [8.911260109659489]
Retrieval-augmented Generation (RAG)は、関連知識と最新の知識でLarge Language Models (LLM)を強化する。
RAG最適化のための強化学習における報酬モデルの役割は未定である。
報酬モデルを開発するためのフレームワークである textbfRAG-Reward を導入する。
論文 参考訳(メタデータ) (2025-01-22T22:59:19Z) - GEC-RAG: Improving Generative Error Correction via Retrieval-Augmented Generation for Automatic Speech Recognition Systems [8.669397145785942]
ペルシャ語のような低リソース領域のASR精度を向上させるために,検索型RAG(Retrieval-Augmented Generation)による生成誤差補正を提案する。
GEC-RAGは、TF-IDF(Term Frequency-Inverse Document Frequency)尺度を用いて、ASRの転写と語彙的に類似した例を検索する。
論文 参考訳(メタデータ) (2025-01-18T11:53:22Z) - RAG-RewardBench: Benchmarking Reward Models in Retrieval Augmented Generation for Preference Alignment [18.491114307921848]
RAG設定におけるRM評価のための最初のベンチマークであるRAG-RewardBenchを提案する。
まず、RMを評価するために、RAG固有の4つの決定的かつ挑戦的なシナリオを設計する。
次に、データソースの多様性を高めるために、18個のRAGサブセット、6個のレトリバー、24個のALMを組み込んだ。
最後に、LLM-as-a-judgeアプローチを採用し、好みのアノテーション効率と有効性を改善する。
論文 参考訳(メタデータ) (2024-12-18T11:28:05Z) - Towards Optimizing a Retrieval Augmented Generation using Large Language Model on Academic Data [4.322454918650575]
本研究では,大規模技術大学における各種研究プログラムを対象としたデータ検索に焦点を当てた。
オープンソース(Llama2、Mistralなど)とクローズドソース(GPT-3.5、GPT-4など)の統合を探ることで、ドメイン固有のコンテキストにおけるRAGフレームワークの適用と最適化に関する貴重な洞察を提供する。
論文 参考訳(メタデータ) (2024-11-13T08:43:37Z) - REAR: A Relevance-Aware Retrieval-Augmented Framework for Open-Domain Question Answering [115.72130322143275]
REAR(Relevance-Aware Retrieval-augmented approach for open-domain Question answering, QA)
我々は,特殊な設計のアセスメントモジュールを組み込むことで,LLMベースのRAGシステムのための新しいアーキテクチャを開発する。
オープンドメインの4つのQAタスクの実験では、REARは以前の競争力のあるRAGアプローチよりも大幅に優れていた。
論文 参考訳(メタデータ) (2024-02-27T13:22:51Z) - DifAugGAN: A Practical Diffusion-style Data Augmentation for GAN-based
Single Image Super-resolution [88.13972071356422]
本稿では,DifAugGAN として知られる GAN ベースの画像超解像法(SR) のための拡散型データ拡張手法を提案する。
それは、訓練中の判別器の校正を改善するために、生成拡散モデルに拡散過程を適用することを含む。
我々のDifAugGANは、現在のGANベースのSISR手法のプラグ・アンド・プレイ戦略であり、判別器の校正を改善し、SR性能を向上させることができる。
論文 参考訳(メタデータ) (2023-11-30T12:37:53Z) - Let's reward step by step: Step-Level reward model as the Navigators for
Reasoning [64.27898739929734]
Process-Supervised Reward Model (PRM)は、トレーニングフェーズ中にステップバイステップのフィードバックをLLMに提供する。
LLMの探索経路を最適化するために,PRMからのステップレベルのフィードバックを応用した欲求探索アルゴリズムを提案する。
提案手法の汎用性を探るため,コーディングタスクのステップレベル報酬データセットを自動生成する手法を開発し,コード生成タスクにおける同様の性能向上を観察する。
論文 参考訳(メタデータ) (2023-10-16T05:21:50Z) - Generative Data Augmentation for Commonsense Reasoning [75.26876609249197]
G-DAUGCは、低リソース環境でより正確で堅牢な学習を実現することを目的とした、新しい生成データ拡張手法である。
G-DAUGCは、バックトランスレーションに基づく既存のデータ拡張手法を一貫して上回っている。
分析の結果,G-DAUGCは多種多様な流線型学習例を産出し,その選択と学習アプローチが性能向上に重要であることが示された。
論文 参考訳(メタデータ) (2020-04-24T06:12:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。