論文の概要: Regularizing Hidden States Enables Learning Generalizable Reward Model for LLMs
- arxiv url: http://arxiv.org/abs/2406.10216v2
- Date: Wed, 23 Oct 2024 08:22:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-24 13:53:59.954717
- Title: Regularizing Hidden States Enables Learning Generalizable Reward Model for LLMs
- Title(参考訳): 正規化隠れ状態はLLMの一般化リワードモデル学習を可能にする
- Authors: Rui Yang, Ruomeng Ding, Yong Lin, Huan Zhang, Tong Zhang,
- Abstract要約: 本研究では,分配シフトに対する報酬モデルの一般化能力を高める新しい手法を提案する。
我々は、ベースモデルの言語モデルヘッドを保持し、隠れた状態のテキスト生成機能を維持するために、テキスト生成損失のスイートを組み込む。
実験結果から,導入した正規化手法が学習報酬モデルの精度を著しく向上することが示された。
- 参考スコア(独自算出の注目度): 25.011675414622392
- License:
- Abstract: Reward models trained on human preference data have been proven to effectively align Large Language Models (LLMs) with human intent within the framework of reinforcement learning from human feedback (RLHF). However, current reward models have limited generalization capabilities to unseen prompts and responses, which can lead to an unexpected phenomenon known as reward over-optimization, resulting in a decline in actual performance due to excessive optimization of rewards. While previous research has advocated for constraining policy optimization, our study introduces a novel approach to enhance the reward model's generalization ability against distribution shifts by regularizing the hidden states. Specifically, we retain the base model's language model head and incorporate a suite of text-generation losses to preserve the hidden states' text-generation capabilities, while concurrently learning a reward head behind the same hidden states. Our experimental results demonstrate that the introduced regularization technique markedly improves the accuracy of learned reward models across a variety of out-of-distribution (OOD) tasks and effectively alleviates the over-optimization issue in RLHF, offering a more reliable and robust preference learning paradigm.
- Abstract(参考訳): 人間の嗜好データに基づいてトレーニングされたリワードモデルは、人間のフィードバック(RLHF)からの強化学習の枠組みの中で、大規模言語モデル(LLM)と人間の意図を効果的に一致させることが証明されている。
しかし、現在の報酬モデルでは、プロンプトや応答が見えないような一般化能力が限られており、報酬過度最適化と呼ばれる予期せぬ現象を引き起こし、報酬の過度な最適化によって実際の性能が低下する。
従来,政策最適化の制約を提唱してきたが,本研究では,隠蔽状態の正規化による分布シフトに対する報酬モデルの一般化能力を向上するための新たなアプローチを提案する。
具体的には、ベースモデルの言語モデルヘッドを保持し、隠れた状態のテキスト生成能力を保ちながら、同じ隠れた状態の背後にある報酬ヘッドを同時に学習する。
実験の結果,導入した正規化手法は,様々なアウト・オブ・ディストリビューション(OOD)タスクにおける学習報酬モデルの精度を著しく向上し,RLHFにおける過度な最適化問題を効果的に緩和し,より信頼性が高く堅牢な選好学習パラダイムを提供することを示した。
関連論文リスト
- On the Modeling Capabilities of Large Language Models for Sequential Decision Making [52.128546842746246]
大規模な事前訓練されたモデルでは、推論や計画タスクのパフォーマンスがますます向上している。
我々は、直接的または間接的に、意思決定ポリシーを作成する能力を評価する。
未知の力学を持つ環境において、合成データを用いた微調整LDMが報酬モデリング能力を大幅に向上させる方法について検討する。
論文 参考訳(メタデータ) (2024-10-08T03:12:57Z) - Self-supervised Preference Optimization: Enhance Your Language Model with Preference Degree Awareness [27.43137305486112]
本稿では,自己監督的選好度損失とアライメント損失を組み合わせた自己監督的選好度損失を構成する,新しい自己監督的選好最適化(SPO)フレームワークを提案する。
その結果,SPOを既存の好み最適化手法とシームレスに統合し,最先端性能を実現することができた。
論文 参考訳(メタデータ) (2024-09-26T12:37:26Z) - On the Generalization of Preference Learning with DPO [17.420727709895736]
大きな言語モデル(LLM)は目覚ましい能力を示してきたが、しばしば人間の好みに合わせるのに苦労している。
嗜好学習は、人間のフィードバックに基づいて、好ましくない反応と好ましくない反応を区別するモデルを訓練する。
本稿では、直接選好最適化(DPO)で訓練されたモデルの一般化保証を解析するための新しい理論的枠組みを提案する。
論文 参考訳(メタデータ) (2024-08-06T22:11:00Z) - Prototypical Reward Network for Data-Efficient RLHF [17.220998116937444]
RLHF(Reinforcement Learning from Human Feedback)の報奨モデルが大規模言語モデル(LLM)の微調整に有効であることが証明された。
提案するフレームワークであるProto-RMは,人間からのフィードバックに制限された報酬モデルを改善するために,プロトタイプネットワークを活用している。
論文 参考訳(メタデータ) (2024-06-06T15:23:30Z) - Exploratory Preference Optimization: Harnessing Implicit Q*-Approximation for Sample-Efficient RLHF [82.7679132059169]
人間のフィードバックから強化学習が言語モデルのアライメントのための中心的なツールとして登場した。
我々は、RLHFにおけるオンライン探索のための新しいアルゴリズム、Exploratory Preference Optimization (XPO)を提案する。
XPOは証明可能な最強の保証と有望な経験的パフォーマンスを享受しています。
論文 参考訳(メタデータ) (2024-05-31T17:39:06Z) - Towards Understanding the Influence of Reward Margin on Preference Model Performance [8.891183078634786]
本研究では,人間のアノテータからの詳細なラベルを必要とせず,好みの違いを推定する新しい手法を提案する。
実験の結果,トレーニングプロセスにマージン値を組み込むことで,報酬モデルの有効性が著しく向上することを示す実証的証拠が得られた。
論文 参考訳(メタデータ) (2024-04-07T12:10:04Z) - RewardBench: Evaluating Reward Models for Language Modeling [100.28366840977966]
本稿では,報酬モデル評価のためのベンチマークデータセットとコードベースであるRewardBenchを紹介する。
データセットは、チャット、推論、安全性にまたがる、プロンプト・チョーゼン・リジェクトされたトリオのコレクションである。
RewardBenchのリーダーボードでは、様々な方法で訓練された報酬モデルを評価する。
論文 参考訳(メタデータ) (2024-03-20T17:49:54Z) - Improving Machine Translation with Human Feedback: An Exploration of Quality Estimation as a Reward Model [75.66013048128302]
本研究では,QEモデルを報酬モデルとして活用し,フィードバックトレーニングにおける人間の嗜好を予測する可能性について検討する。
まず,QEに基づくフィードバックトレーニングにおいて,翻訳品質が低下する中で,報酬の増大として現れる過度な最適化問題を同定した。
問題に対処するために,ルールを用いて誤った翻訳を検知し,報酬のスコアにペナルティ項を割り当てる,シンプルで効果的な手法を採用する。
論文 参考訳(メタデータ) (2024-01-23T16:07:43Z) - Secrets of RLHF in Large Language Models Part II: Reward Modeling [134.97964938009588]
本稿では,データセットにおける不正確で曖昧な嗜好の影響を軽減するために,一連の新しい手法を紹介する。
また、選択された応答と拒否された応答を区別する報酬モデルの有用性を高めるために、対照的な学習を導入する。
論文 参考訳(メタデータ) (2024-01-11T17:56:59Z) - On the model-based stochastic value gradient for continuous
reinforcement learning [50.085645237597056]
モデルベースエージェントは,サンプル効率と最終報酬の両方の観点から,最先端のモデルフリーエージェントより優れていることを示す。
以上の結果から,モデルに基づく政策評価がより注目に値することが示唆された。
論文 参考訳(メタデータ) (2020-08-28T17:58:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。