論文の概要: Dynamic Evidence Decoupling for Trusted Multi-view Learning
- arxiv url: http://arxiv.org/abs/2410.03796v1
- Date: Fri, 4 Oct 2024 03:27:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 16:20:48.012514
- Title: Dynamic Evidence Decoupling for Trusted Multi-view Learning
- Title(参考訳): 信頼された多視点学習のための動的エビデンスデカップリング
- Authors: Ying Liu, Lihong Liu, Cai Xu, Xiangyu Song, Ziyu Guan, Wei Zhao,
- Abstract要約: 本稿では,一貫性と相補性を考慮したマルチビューラーニング(CCML)手法を提案する。
我々はまず,信念の質量ベクトルと不確実性推定からなる明らかな深層ニューラルネットワークを用いて,見解を構築する。
その結果, 動的エビデンスデカップリング戦略の有効性を検証し, CCMLが精度と信頼性の基準線を著しく上回ることを示した。
- 参考スコア(独自算出の注目度): 17.029245880233816
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-view learning methods often focus on improving decision accuracy, while neglecting the decision uncertainty, limiting their suitability for safety-critical applications. To mitigate this, researchers propose trusted multi-view learning methods that estimate classification probabilities and uncertainty by learning the class distributions for each instance. However, these methods assume that the data from each view can effectively differentiate all categories, ignoring the semantic vagueness phenomenon in real-world multi-view data. Our findings demonstrate that this phenomenon significantly suppresses the learning of view-specific evidence in existing methods. We propose a Consistent and Complementary-aware trusted Multi-view Learning (CCML) method to solve this problem. We first construct view opinions using evidential deep neural networks, which consist of belief mass vectors and uncertainty estimates. Next, we dynamically decouple the consistent and complementary evidence. The consistent evidence is derived from the shared portions across all views, while the complementary evidence is obtained by averaging the differing portions across all views. We ensure that the opinion constructed from the consistent evidence strictly aligns with the ground-truth category. For the opinion constructed from the complementary evidence, we allow it for potential vagueness in the evidence. We compare CCML with state-of-the-art baselines on one synthetic and six real-world datasets. The results validate the effectiveness of the dynamic evidence decoupling strategy and show that CCML significantly outperforms baselines on accuracy and reliability. The code is released at https://github.com/Lihong-Liu/CCML.
- Abstract(参考訳): マルチビュー学習手法は、意思決定の不確実性を無視しながら、意思決定の正確性を改善することに集中し、安全クリティカルなアプリケーションに対する適合性を制限している。
これを軽減するために,各インスタンスのクラス分布を学習することにより,分類確率と不確実性を推定する信頼度の高い多視点学習手法を提案する。
しかし、これらの手法は、実世界のマルチビューデータにおける意味的曖昧さ現象を無視して、各視点のデータが全てのカテゴリを効果的に区別できると仮定する。
以上の結果から,この現象は既存の手法による視点特異的な証拠の学習を著しく抑制することが明らかとなった。
本稿では,この問題を解決するために,一貫性と補完性を考慮した信頼多視点学習(CCML)手法を提案する。
我々はまず,信念の質量ベクトルと不確実性推定からなる明らかな深層ニューラルネットワークを用いて,見解を構築する。
次に、一貫性と相補的な証拠を動的に分離する。
一貫性のある証拠は、すべてのビューで共有された部分から導き出され、補完的な証拠は、すべてのビューで異なる部分の平均化によって得られる。
一貫性のある証拠から構築された意見が、根本真実のカテゴリーと厳密に一致していることを保証する。
補完的な証拠から構築された意見については、証拠の潜在的な曖昧さを許容する。
CCMLと最先端のベースラインを、1つの合成データセットと6つの実世界のデータセットで比較する。
その結果, 動的エビデンスデカップリング戦略の有効性を検証し, CCMLが精度と信頼性の基準線を著しく上回ることを示した。
コードはhttps://github.com/Lihong-Liu/CCMLで公開されている。
関連論文リスト
- Evidential Deep Partial Multi-View Classification With Discount Fusion [24.139495744683128]
Evidential Deep partial Multi-View Classification (EDP-MVC) と呼ばれる新しいフレームワークを提案する。
欠落したビューに対処するためにK-means命令を使用し、マルチビューデータの完全なセットを作成します。
この暗示されたデータ内の潜在的な衝突や不確実性は、下流の推論の信頼性に影響を与える可能性がある。
論文 参考訳(メタデータ) (2024-08-23T14:50:49Z) - Regularized Contrastive Partial Multi-view Outlier Detection [76.77036536484114]
RCPMOD(Regularized Contrastive partial Multi-view Outlier Detection)と呼ばれる新しい手法を提案する。
このフレームワークでは、コントラスト学習を利用して、ビュー一貫性のある情報を学び、一貫性の度合いでアウトレイラを識別する。
4つのベンチマークデータセットによる実験結果から,提案手法が最先端の競合より優れていることが示された。
論文 参考訳(メタデータ) (2024-08-02T14:34:27Z) - Navigating Conflicting Views: Harnessing Trust for Learning [5.4486293124577125]
既存の信頼性フレームワークを強化するために,計算信頼に基づく割引手法を開発した。
提案手法は,Top-1精度,AUC-ROC for Uncertainty-Aware Prediction,Fleiss' Kappa,Multi-View Agreement with Ground Truthの6つの実世界のデータセットを用いて評価した。
論文 参考訳(メタデータ) (2024-06-03T03:22:18Z) - Revealing Multimodal Contrastive Representation Learning through Latent
Partial Causal Models [85.67870425656368]
マルチモーダルデータに特化して設計された統一因果モデルを提案する。
マルチモーダル・コントラスト表現学習は潜在結合変数の同定に優れていることを示す。
実験では、仮定が破られたとしても、我々の発見の堅牢性を示す。
論文 参考訳(メタデータ) (2024-02-09T07:18:06Z) - Variational Distillation for Multi-View Learning [104.17551354374821]
我々は,多視点表現学習における2つの重要な特徴を利用するために,様々な情報ボトルネックを設計する。
厳密な理論的保証の下で,本手法は,観察とセマンティックラベルの内在的相関の把握を可能にする。
論文 参考訳(メタデータ) (2022-06-20T03:09:46Z) - Trusted Multi-View Classification with Dynamic Evidential Fusion [73.35990456162745]
信頼型マルチビュー分類(TMC)と呼ばれる新しいマルチビュー分類アルゴリズムを提案する。
TMCは、様々な視点をエビデンスレベルで動的に統合することで、マルチビュー学習のための新しいパラダイムを提供する。
理論的および実験的結果は、精度、堅牢性、信頼性において提案されたモデルの有効性を検証した。
論文 参考訳(メタデータ) (2022-04-25T03:48:49Z) - On Modality Bias Recognition and Reduction [70.69194431713825]
マルチモーダル分類の文脈におけるモダリティバイアス問題について検討する。
本稿では,各ラベルの特徴空間を適応的に学習するプラグアンドプレイ損失関数法を提案する。
本手法は, ベースラインに比べ, 顕著な性能向上を実現している。
論文 参考訳(メタデータ) (2022-02-25T13:47:09Z) - Latent Correlation-Based Multiview Learning and Self-Supervision: A
Unifying Perspective [41.80156041871873]
この研究は、教師なしのマルチビュー学習のための理論支援フレームワークを提供する。
私たちの開発は、各ビューが共有コンポーネントとプライベートコンポーネントの非線形混合であるマルチビューモデルの提案から始まります。
さらに、各ビュー内のプライベート情報を適切な正規化設計を用いて共有から確実に切り離すことができる。
論文 参考訳(メタデータ) (2021-06-14T00:12:36Z) - Trusted Multi-View Classification [76.73585034192894]
本稿では,信頼された多視点分類と呼ばれる新しい多視点分類手法を提案する。
さまざまなビューをエビデンスレベルで動的に統合することで、マルチビュー学習のための新しいパラダイムを提供する。
提案アルゴリズムは,分類信頼性とロバスト性の両方を促進するために,複数のビューを併用する。
論文 参考訳(メタデータ) (2021-02-03T13:30:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。