論文の概要: SOI: Scaling Down Computational Complexity by Estimating Partial States of the Model
- arxiv url: http://arxiv.org/abs/2410.03813v1
- Date: Fri, 4 Oct 2024 13:53:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 16:10:45.596044
- Title: SOI: Scaling Down Computational Complexity by Estimating Partial States of the Model
- Title(参考訳): SOI:モデルの部分状態の推定による計算複雑性のスケールダウン
- Authors: Grzegorz Stefański, Paweł Daniluk, Artur Szumaczuk, Jakub Tkaczuk,
- Abstract要約: 最小限のアプライアンスで使用されるマイクロコントローラ(MCU)は、いまだに適度に大きく、最先端の人工ニューラルネットワーク(ANN)を実行できない。
本稿では,ANNの計算複雑性を低減することを目的とした,Scattered Online Inference (SOI) と呼ばれる新しい手法を提案する。
- 参考スコア(独自算出の注目度): 0.7499722271664147
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Consumer electronics used to follow the miniaturization trend described by Moore's Law. Despite increased processing power in Microcontroller Units (MCUs), MCUs used in the smallest appliances are still not capable of running even moderately big, state-of-the-art artificial neural networks (ANNs) especially in time-sensitive scenarios. In this work, we present a novel method called Scattered Online Inference (SOI) that aims to reduce the computational complexity of ANNs. SOI leverages the continuity and seasonality of time-series data and model predictions, enabling extrapolation for processing speed improvements, particularly in deeper layers. By applying compression, SOI generates more general inner partial states of ANN, allowing skipping full model recalculation at each inference.
- Abstract(参考訳): 消費者電子はムーアの法則によって記述された小型化の傾向に従っていた。
マイクロコントローラユニット(MCU)の処理能力は向上しているが、最小限のアプライアンスで使用されるMCUは、特に時間に敏感なシナリオにおいて、さらに大きく、最先端の人工知能ニューラルネットワーク(ANN)を実行することができない。
本研究では,ANNの計算複雑性を低減することを目的とした,Scattered Online Inference (SOI) と呼ばれる新しい手法を提案する。
SOIは時系列データとモデル予測の連続性と季節性を活用し、特に深い層において処理速度の改善のための外挿を可能にする。
圧縮を適用することで、SOIはANNのより一般的な内部部分状態を生成し、各推論で完全なモデル再計算をスキップすることができる。
関連論文リスト
- LitE-SNN: Designing Lightweight and Efficient Spiking Neural Network through Spatial-Temporal Compressive Network Search and Joint Optimization [48.41286573672824]
スパイキングニューラルネットワーク(SNN)は人間の脳の情報処理機構を模倣し、エネルギー効率が高い。
本稿では,空間圧縮と時間圧縮の両方を自動ネットワーク設計プロセスに組み込むLitE-SNNという新しい手法を提案する。
論文 参考訳(メタデータ) (2024-01-26T05:23:11Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - Fluid Batching: Exit-Aware Preemptive Serving of Early-Exit Neural
Networks on Edge NPUs [74.83613252825754]
スマートエコシステム(smart ecosystems)"は、スタンドアロンではなく、センセーションが同時に行われるように形成されています。
これはデバイス上の推論パラダイムを、エッジにニューラル処理ユニット(NPU)をデプロイする方向にシフトしている。
そこで本研究では,実行時のプリエンプションが到着・終了プロセスによってもたらされる動的性を考慮に入れた,新しい早期終了スケジューリングを提案する。
論文 参考訳(メタデータ) (2022-09-27T15:04:01Z) - EGRU: Event-based GRU for activity-sparse inference and learning [0.8260432715157026]
本稿では,GRU(Gated Recurrent Units)をイベントベースアクティビティスパースモデルとして再構成するモデルを提案する。
イベントベースGRU(EGRU)は,実世界のタスクにおける最先端のリカレントネットワークモデルと比較して,競合性能を示す。
論文 参考訳(メタデータ) (2022-06-13T14:07:56Z) - Go Beyond Multiple Instance Neural Networks: Deep-learning Models based
on Local Pattern Aggregation [0.0]
畳み込みニューラルネットワーク(CNN)は、臨床心電図(ECG)と話者非依存音声の処理においてブレークスルーをもたらした。
本稿では,局所的なパターン集約に基づくディープラーニングモデルを提案する。
LPANetと呼ばれる新しいネットワーク構造には、トリミングと集約操作が組み込まれている。
論文 参考訳(メタデータ) (2022-05-28T13:18:18Z) - Low-bit Quantization of Recurrent Neural Network Language Models Using
Alternating Direction Methods of Multipliers [67.688697838109]
本稿では、乗算器の交互方向法(ADMM)を用いて、スクラッチから量子化RNNLMを訓練する新しい手法を提案する。
2つのタスクの実験から、提案されたADMM量子化は、完全な精度ベースライン RNNLM で最大31倍のモデルサイズ圧縮係数を達成したことが示唆された。
論文 参考訳(メタデータ) (2021-11-29T09:30:06Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - Structured in Space, Randomized in Time: Leveraging Dropout in RNNs for
Efficient Training [18.521882534906972]
我々は,同じ物理ニューロンの集合をバッチ内にドロップアウトし,列(ロー)レベルの隠された状態空間を作り出すことにより,ドロップアウトパターンを構築することを提案する。
PTBデータセットに基づく言語モデリング、IWSLT De-EnデータセットとEn-Viデータセットを用いたOpenNMTベースの機械翻訳、エンティティ認識シーケンスラベリングの3つの代表的なNLPタスクについて実験を行った。
論文 参考訳(メタデータ) (2021-06-22T22:44:32Z) - HiPPO: Recurrent Memory with Optimal Polynomial Projections [93.3537706398653]
本稿では,連続信号と離散時系列をベースに投影してオンライン圧縮するための一般フレームワーク(HiPPO)を提案する。
過去の各時間ステップの重要性を示す尺度が与えられた場合、HiPPOは自然なオンライン関数近似問題に対する最適解を生成する。
このフォーマルなフレームワークは、すべての履歴を記憶するために時間をかけてスケールする新しいメモリ更新メカニズム(HiPPO-LegS)を提供する。
論文 参考訳(メタデータ) (2020-08-17T23:39:33Z) - Efficient Synthesis of Compact Deep Neural Networks [17.362146401041528]
ディープニューラルネットワーク(DNN)は、無数の機械学習アプリケーションにデプロイされている。
これらの大規模で深いモデルは、膨大な計算コスト、高いメモリ帯域幅、長いレイテンシのために、現実世界のアプリケーションには適さないことが多い。
本稿では,DNN/LSTMモデルの自動合成手法について概説する。
論文 参考訳(メタデータ) (2020-04-18T21:20:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。