論文の概要: FDR-SVM: A Federated Distributionally Robust Support Vector Machine via a Mixture of Wasserstein Balls Ambiguity Set
- arxiv url: http://arxiv.org/abs/2410.03877v3
- Date: Mon, 18 Aug 2025 18:30:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-20 15:36:31.326475
- Title: FDR-SVM: A Federated Distributionally Robust Support Vector Machine via a Mixture of Wasserstein Balls Ambiguity Set
- Title(参考訳): FDR-SVM:Wasserstein Balls Ambiguity Setの混合による分散ロバスト支援ベクトルマシン
- Authors: Michael Ibrahim, Heraldo Rozas, Nagi Gebraeel, Weijun Xie,
- Abstract要約: 本稿では,複数のクライアントと中央サーバのネットワーク上でのフェデレーション分類問題について検討する。
我々はFDR-SVM(Federated Distributionally Robust Support Vector Machine)を開発した。
我々はFDR-SVM問題を解く2つのアルゴリズムを厳格に導き、それらの収束挙動と最悪の時間複雑性を解析する。
- 参考スコア(独自算出の注目度): 3.662364375995991
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study a federated classification problem over a network of multiple clients and a central server, in which each client's local data remains private and is subject to uncertainty in both the features and labels. To address these uncertainties, we develop a novel Federated Distributionally Robust Support Vector Machine (FDR-SVM), robustifying the classification boundary against perturbations in local data distributions. Specifically, the data at each client is governed by a unique true distribution that is unknown. To handle this heterogeneity, we develop a novel Mixture of Wasserstein Balls (MoWB) ambiguity set, naturally extending the classical Wasserstein ball to the federated setting. We then establish theoretical guarantees for our proposed MoWB, deriving an out-of-sample performance bound and showing that its design preserves the separability of the FDR-SVM optimization problem. Next, we rigorously derive two algorithms that solve the FDR-SVM problem and analyze their convergence behavior as well as their worst-case time complexity. We evaluate our algorithms on industrial data and various UCI datasets, whereby we demonstrate that they frequently outperform existing state-of-the-art approaches.
- Abstract(参考訳): 我々は,複数のクライアントと中央サーバのネットワーク上で,各クライアントのローカルデータがプライベートのままであり,特徴とラベルの両面で不確実な,連合型分類問題について検討する。
これらの不確実性に対処するため,FDR-SVM(Federated Distributionally Robust Support Vector Machine)を開発した。
具体的には、各クライアントのデータは、未知のユニークな真の分布によって管理される。
この不均一性に対処するために、古典的なワッサースタイン球を連邦設定に自然に拡張する、新しいワッサースタイン球の混合(MoWB)曖昧性集合を開発する。
そして,提案したMoWBの理論的保証を確立し,その設計がFDR-SVM最適化問題の分離性を保っていることを示す。
次に、FDR-SVM問題を解く2つのアルゴリズムを厳格に導き、それらの収束挙動と最悪の時間複雑性を分析する。
産業データと様々なUCIデータセットに対するアルゴリズムの評価を行い、既存の最先端のアプローチを頻繁に上回っていることを示す。
関連論文リスト
- Optimal Transport-based Domain Alignment as a Preprocessing Step for Federated Learning [0.48342038441006796]
Federated Learning(FL)は、機械学習のサブフィールドであり、ローカルデータを中央サーバと共有することを避ける。
FLでは、局所的に訓練されたモデルと不均衡なデータセットを融合させることで、グローバルモデルアグリゲーションの性能が低下する可能性がある。
本稿では,エッジデバイスに沿ったデータの分布差を最小化してデータセットを整列する,最適なトランスポートベースの前処理アルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-06-04T15:35:55Z) - Client Selection in Federated Learning with Data Heterogeneity and Network Latencies [19.161254709653914]
Federated Learning(FL)は、複数のクライアントがプライベートデータに基づいてローカルトレーニングを行う分散機械学習パラダイムである。
本稿では,両不均一性を扱う理論的に最適なクライアント選択方式を2つ提案する。
論文 参考訳(メタデータ) (2025-04-02T17:31:15Z) - ROSS:RObust decentralized Stochastic learning based on Shapley values [21.376454436691795]
エージェントのグループは、中央サーバーなしで分散データセットを使用してグローバルモデルを学ぶために協力します。
データは非独立に、同一に配布され、ノイズや毒で汚染されることもある。
本稿では,Shapley値に基づく頑健な分散学習アルゴリズム ROSS を提案する。
論文 参考訳(メタデータ) (2024-11-01T05:05:15Z) - Robust Model Evaluation over Large-scale Federated Networks [8.700087812420687]
我々は、目に見えないターゲットネットワーク上での機械学習モデルの性能を認証する課題に対処する。
モデルの平均損失を理論的に保証し、リスクCDFに一様境界を与える。
私たちのバウンダリは、K$クライアントへの多数のクエリに間に合うように計算可能で、モデルのプライベートデータにおける損失のみをクエリすることで、クライアントのプライバシを保存することができます。
論文 参考訳(メタデータ) (2024-10-26T18:45:15Z) - Distributionally Robust Clustered Federated Learning: A Case Study in Healthcare [9.433126190164224]
CS-RCFL(Cross-silo Robust Clustered Federated Learning)と呼ばれる新しいアルゴリズムを導入する。
我々は,各クライアントの経験的分布の周囲にあいまいな集合を構築し,ローカルデータの分布シフトをキャプチャする。
そこで我々は,モデルに依存しない整数分数プログラムを提案し,クライアントの連立への最適分布的ロバストなクラスタリングを決定する。
論文 参考訳(メタデータ) (2024-10-09T16:25:01Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
私たちはaを提案します。
フェデレートされた異常検出フレームワークであるPeFADは、プライバシーの懸念が高まっている。
我々は、4つの実際のデータセットに対して広範な評価を行い、PeFADは既存の最先端ベースラインを最大28.74%上回っている。
論文 参考訳(メタデータ) (2024-06-04T13:51:08Z) - Serverless Federated AUPRC Optimization for Multi-Party Collaborative
Imbalanced Data Mining [119.89373423433804]
有効指標としてAUPRC(Area Under Precision-Recall)を導入した。
サーバーレスのマルチパーティ共同トレーニングは、サーバーノードのボトルネックを避けることで通信コストを削減できる。
本稿では,AUPRCを直接最適化する ServerLess biAsed sTochastic gradiEnt (SLATE) アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-08-06T06:51:32Z) - Performative Federated Learning: A Solution to Model-Dependent and
Heterogeneous Distribution Shifts [24.196279060605402]
複数のクライアントとサーバからなる連合学習(FL)システムについて検討する。
クライアントのデータが静的であると仮定する従来のFLフレームワークとは異なり、クライアントのデータ分散がデプロイされた決定モデルによって再生成されるシナリオを考察する。
論文 参考訳(メタデータ) (2023-05-08T23:29:24Z) - Beyond ADMM: A Unified Client-variance-reduced Adaptive Federated
Learning Framework [82.36466358313025]
我々はFedVRAと呼ばれる原始二重FLアルゴリズムを提案し、このアルゴリズムはグローバルモデルの分散還元レベルとバイアスを適応的に制御することができる。
半教師付き画像分類タスクに基づく実験は,既存の手法よりもFedVRAの方が優れていることを示す。
論文 参考訳(メタデータ) (2022-12-03T03:27:51Z) - Optimizing Server-side Aggregation For Robust Federated Learning via
Subspace Training [80.03567604524268]
クライアント間の非IIDデータ分散と中毒攻撃は、現実世界のフェデレーション学習システムにおける2つの大きな課題である。
サーバ側集約プロセスを最適化する汎用的なアプローチであるSmartFLを提案する。
本稿では,SmartFLの収束と一般化能力に関する理論的解析を行う。
論文 参考訳(メタデータ) (2022-11-10T13:20:56Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
連合学習は、生データをリークすることなく、複数の組織のデータを使用してグローバルモデルをトレーニングするための有望なアプローチとして登場した。
上記の2つの課題を同時に解決するための一般的な枠組みを提案する。
我々は、ロバストネス解析、収束解析、一般化能力を含む包括的理論的解析を提供する。
論文 参考訳(メタデータ) (2022-04-16T08:08:29Z) - Federated Multi-Task Learning under a Mixture of Distributions [10.00087964926414]
Federated Learning(FL)は、機械学習モデルのデバイス上での協調トレーニングのためのフレームワークである。
FLにおける最初の取り組みは、クライアント間で平均的なパフォーマンスを持つ単一のグローバルモデルを学ぶことに焦点を当てたが、グローバルモデルは、与えられたクライアントに対して任意に悪いかもしれない。
我々は,各局所データ分布が未知の基底分布の混合であるというフレキシブルな仮定の下で,フェデレーションMTLについて検討した。
論文 参考訳(メタデータ) (2021-08-23T15:47:53Z) - Coded Stochastic ADMM for Decentralized Consensus Optimization with Edge
Computing [113.52575069030192]
セキュリティ要件の高いアプリケーションを含むビッグデータは、モバイルデバイスやドローン、車両など、複数の異種デバイスに収集され、格納されることが多い。
通信コストとセキュリティ要件の制限のため、核融合センターにデータを集約するのではなく、分散的に情報を抽出することが最重要となる。
分散エッジノードを介してデータを局所的に処理するマルチエージェントシステムにおいて,モデルパラメータを学習する問題を考える。
分散学習モデルを開発するために,乗算器アルゴリズムの最小バッチ交互方向法(ADMM)のクラスについて検討した。
論文 参考訳(メタデータ) (2020-10-02T10:41:59Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
分散ロバストな最適化フレームワークはパラメトリックモデルのトレーニングのために検討されている。
目的は、逆操作された入力データに対して頑健なトレーニングモデルを提供することである。
提案されたアルゴリズムは、オーバーヘッドがほとんどない堅牢性を提供する。
論文 参考訳(メタデータ) (2020-07-07T18:25:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。