論文の概要: Quantum Monte Carlo Integration for Simulation-Based Optimisation
- arxiv url: http://arxiv.org/abs/2410.03926v1
- Date: Tue, 8 Oct 2024 12:49:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 15:21:16.090558
- Title: Quantum Monte Carlo Integration for Simulation-Based Optimisation
- Title(参考訳): シミュレーションに基づく最適化のための量子モンテカルロ積分
- Authors: Jingjing Cui, Philippe J. S. de Brouwer, Steven Herbert, Philip Intallura, Cahit Kargi, Georgios Korpas, Alexandre Krajenbrink, William Shooshmith, Ifan Williams, Ban Zheng,
- Abstract要約: シミュレーションに基づく最適化問題のサブルーチンとして量子アルゴリズムを統合する可能性について検討する。
量子モンテカルロ積分の定式化に起因した全ての系統的誤差を徹底的に解析する。
基本的金融ユースケースに対する量子モンテカルロ積分の適用性について検討する。
- 参考スコア(独自算出の注目度): 34.96100129498306
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We investigate the feasibility of integrating quantum algorithms as subroutines of simulation-based optimisation problems with relevance to and potential applications in mathematical finance. To this end, we conduct a thorough analysis of all systematic errors arising in the formulation of quantum Monte Carlo integration in order to better understand the resources required to encode various distributions such as a Gaussian, and to evaluate statistical quantities such as the Value-at-Risk (VaR) and Conditional-Value-at-Risk (CVaR) of an asset. Finally, we study the applicability of quantum Monte Carlo integration for fundamental financial use cases in terms of simulation-based optimisations, notably Mean-Conditional-Value-at-Risk (Mean-CVaR) and (risky) Mean-Variance (Mean-Var) optimisation problems. In particular, we study the Mean-Var optimisation problem in the presence of noise on a quantum device, and benchmark a quantum error mitigation method that applies to quantum amplitude estimation -- a key subroutine of quantum Monte Carlo integration -- showcasing the utility of such an approach.
- Abstract(参考訳): 本稿では,シミュレーションに基づく最適化問題のサブルーチンとして量子アルゴリズムを統合する可能性とその数学的ファイナンスへの応用の可能性について検討する。
この目的のために,量子モンテカルロ積分の定式化に伴うすべての系統的誤差を網羅的に解析し,ガウス分布などの様々な分布を符号化するために必要な資源をよりよく理解し,資産の値-at-Risk (VaR) や条件-値-at-Risk (CVaR) などの統計量を評価する。
最後に,シミュレーションに基づく最適化,特にMean-Conditional-Value-at-Risk (Mean-CVaR) と (risky) Mean-Var (Mean-Var) の最適化問題の観点から,量子モンテカルロ積分の適用性を検討した。
特に,量子デバイスにノイズが存在する場合の平均値最適化問題について検討し,量子振幅推定(量子モンテカルロ積分のキーサブルーチン)に適用する量子誤差緩和法をベンチマークし,そのようなアプローチの有用性を示す。
関連論文リスト
- PO-QA: A Framework for Portfolio Optimization using Quantum Algorithms [4.2435928520499635]
ポートフォリオ最適化(PO)は、投資ポートフォリオのリスクを最小限に抑えつつ、純利益を最大化することを目的とした金融問題である。
本稿では,量子パラメータの変動を調べるために,新しいスケーラブルなフレームワークPO-QAを提案する。
本結果は,量子機械学習のレンズからPOを理解する上で有効な知見を提供する。
論文 参考訳(メタデータ) (2024-07-29T10:26:28Z) - Probabilistic Sampling of Balanced K-Means using Adiabatic Quantum Computing [93.83016310295804]
AQCは研究関心の問題を実装でき、コンピュータビジョンタスクのための量子表現の開発に拍車をかけた。
本研究では,この情報を確率的バランスの取れたk平均クラスタリングに活用する可能性について検討する。
最適でない解を捨てる代わりに, 計算コストを少なくして, 校正後部確率を計算することを提案する。
これにより、合成タスクと実際の視覚データについて、D-Wave AQCで示すような曖昧な解とデータポイントを識別することができる。
論文 参考訳(メタデータ) (2023-10-18T17:59:45Z) - A Survey of Quantum Alternatives to Randomized Algorithms: Monte Carlo
Integration and Beyond [7.060988518771793]
我々は,モンテカルロ法における量子回路を用いた計算速度において,量子的優位性を得る可能性に注目した。
従来のモンテカルロに取って代わる量子アルゴリズムを再検討し、既存の量子アルゴリズムと潜在的な量子実現の両方を考える。
論文 参考訳(メタデータ) (2023-03-08T23:39:49Z) - Generalization Metrics for Practical Quantum Advantage in Generative
Models [68.8204255655161]
生成モデリングは量子コンピュータにとって広く受け入れられている自然のユースケースである。
我々は,アルゴリズムの一般化性能を計測して,生成モデリングのための実用的な量子優位性を探索する,単純で曖昧な手法を構築した。
シミュレーションの結果、我々の量子にインスパイアされたモデルは、目に見えない、有効なサンプルを生成するのに、最大で68倍の費用がかかります。
論文 参考訳(メタデータ) (2022-01-21T16:35:35Z) - Markov Chain Monte-Carlo Enhanced Variational Quantum Algorithms [0.0]
本稿では,モンテカルロ法を用いて解析的境界を時間複雑度に設定する変動量子アルゴリズムを提案する。
提案手法の有効性と,MaxCutインスタンスの量子回路シミュレーションによる解析の有効性を実証する。
論文 参考訳(メタデータ) (2021-12-03T23:03:44Z) - Quantum algorithm for stochastic optimal stopping problems with
applications in finance [60.54699116238087]
有名な最小二乗モンテカルロ (LSM) アルゴリズムは、線形最小二乗回帰とモンテカルロシミュレーションを組み合わせることで、最適停止理論の問題を解決する。
プロセスへの量子アクセス、最適な停止時間を計算するための量子回路、モンテカルロの量子技術に基づく量子LSMを提案する。
論文 参考訳(メタデータ) (2021-11-30T12:21:41Z) - Quantum algorithm for credit valuation adjustments [0.0]
このようなユースケースの特定の1つ、クレジットバリュエーション調整(CVA)に注目し、実用的なインスタンスに対する量子優位性に向けた機会と課題を特定する。
振幅増幅のリソース要件を最小化するために、近年開発された量子振幅推定のベイズ変量を採用する。
古典モンテカルロシミュレーションによるコンクリートCVAインスタンスの量子スピードアップの予測を数値解析により評価する。
論文 参考訳(メタデータ) (2021-05-25T17:11:20Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
量子コンピューティングの標準的なアプローチは、古典的にシミュレート可能なフォールトトレラントな演算セットを促進するという考え方に基づいている。
量子回路の古典的準確率シミュレーションをどのように促進するかを示す。
論文 参考訳(メタデータ) (2021-03-12T20:58:41Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
少数のアンシラ量子ビットを用いて環境との相互作用をシミュレートするデジタル量子アルゴリズムを開発した。
逆イジングモデルの熱状態のシミュレーションによるアルゴリズムの評価を行った。
論文 参考訳(メタデータ) (2021-03-04T18:21:00Z) - A Dynamical Systems Approach for Convergence of the Bayesian EM
Algorithm [59.99439951055238]
我々は、(離散時間)リアプノフ安定性理論が、必ずしも勾配ベースではない最適化アルゴリズムの分析(および潜在的な設計)において、いかに強力なツールとして役立つかを示す。
本稿では,不完全データベイズフレームワークにおけるパラメータ推定を,MAP-EM (maximum a reari expectation-maximization) と呼ばれる一般的な最適化アルゴリズムを用いて行うことに着目したML問題について述べる。
高速収束(線形あるいは二次的)が達成され,S&Cアプローチを使わずに発表することが困難であった可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-23T01:34:18Z) - Policy Gradient based Quantum Approximate Optimization Algorithm [2.5614220901453333]
本稿では,QAOAの変動パラメータをノイズキャンバス方式で最適化するために,政策段階に基づく強化学習アルゴリズムが適していることを示す。
単一および多ビット系における量子状態伝達問題に対するアルゴリズムの性能解析を行う。
論文 参考訳(メタデータ) (2020-02-04T00:46:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。