論文の概要: Quantum algorithm for credit valuation adjustments
- arxiv url: http://arxiv.org/abs/2105.12087v1
- Date: Tue, 25 May 2021 17:11:20 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-29 20:52:19.086023
- Title: Quantum algorithm for credit valuation adjustments
- Title(参考訳): 信用評価調整のための量子アルゴリズム
- Authors: Javier Alcazar, Andrea Cadarso, Amara Katabarwa, Marta Mauri, Borja
Peropadre, Guoming Wang, Yudong Cao
- Abstract要約: このようなユースケースの特定の1つ、クレジットバリュエーション調整(CVA)に注目し、実用的なインスタンスに対する量子優位性に向けた機会と課題を特定する。
振幅増幅のリソース要件を最小化するために、近年開発された量子振幅推定のベイズ変量を採用する。
古典モンテカルロシミュレーションによるコンクリートCVAインスタンスの量子スピードアップの予測を数値解析により評価する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum mechanics is well known to accelerate statistical sampling processes
over classical techniques. In quantitative finance, statistical samplings arise
broadly in many use cases. Here we focus on a particular one of such use cases,
credit valuation adjustment (CVA), and identify opportunities and challenges
towards quantum advantage for practical instances. To improve the depths of
quantum circuits for solving such problem, we draw on various heuristics that
indicate the potential for significant improvement over well-known techniques
such as reversible logical circuit synthesis. In minimizing the resource
requirements for amplitude amplification while maximizing the speedup gained
from the quantum coherence of a noisy device, we adopt a recently developed
Bayesian variant of quantum amplitude estimation using engineered likelihood
functions (ELF). We perform numerical analyses to characterize the prospect of
quantum speedup in concrete CVA instances over classical Monte Carlo
simulations.
- Abstract(参考訳): 量子力学は古典的手法よりも統計的サンプリングプロセスを加速するためによく知られている。
定量的ファイナンスでは、統計サンプリングは多くのユースケースで広く発生する。
ここでは、そのようなユースケースの特定の1つ、クレジットバリュエーション調整(CVA)に注目し、実用的なインスタンスに対する量子優位性に対する機会と課題を特定する。
このような問題を解決するため、量子回路の奥行きを改善するために、可逆論理回路合成のようなよく知られた技術よりも大幅に改善される可能性を示す様々なヒューリスティックスを取り上げている。
雑音下での量子コヒーレンスから得られるスピードアップを最大化しつつ振幅増幅のための資源要件を最小化するために,最近開発された工学的確率関数(elf)を用いたベイズ型量子振幅推定法を適用した。
古典モンテカルロシミュレーションの具体的なcvaインスタンスにおける量子スピードアップの展望を特徴付けるために数値解析を行う。
関連論文リスト
- Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
我々は、事前学習されたニューラルネットワークを用いて変分量子回路(VQC)を強化する革新的なアプローチを導入する。
この手法は近似誤差をキュービット数から効果的に分離し、制約条件の必要性を除去する。
我々の結果はヒトゲノム解析などの応用にまで拡張され、我々のアプローチの幅広い適用性を示している。
論文 参考訳(メタデータ) (2024-11-13T12:03:39Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Ansatz-Agnostic Exponential Resource Saving in Variational Quantum
Algorithms Using Shallow Shadows [5.618657159109373]
変分量子アルゴリズム(VQA)は、短期的な量子優位性の実証の有望な候補として特定されている。
本報告では,本論文で研究されている浅層アンザッツに対して,同様のレベルの貯蓄を実現するための浅層影に基づくプロトコルを提案する。
VQAが強力な選択肢となる量子情報、すなわち変分量子状態準備と変分量子回路合成の2つの重要な応用が示されている。
論文 参考訳(メタデータ) (2023-09-09T11:00:39Z) - Improved maximum-likelihood quantum amplitude estimation [0.0]
量子推定は、量子強化モンテカルロシミュレーションや量子機械学習など、多数の強力な量子アルゴリズムにおいて重要なサブルーチンである。
本稿では,最大形量子振幅推定 (MLQAE) の解析をさらに深め,量子回路深度が制限されるシナリオを含むより規範的な形式にアルゴリズムを配置する。
次に,この問題を克服するアルゴリズムの修正を提案し,数値的に検証し,近・中期量子ハードウェアにおける実用的サブルーチンとしての有用性をさらに高める。
論文 参考訳(メタデータ) (2022-09-07T17:30:37Z) - Fundamental limitations on optimization in variational quantum
algorithms [7.165356904023871]
そのような短期量子アプリケーションを確立するための主要なパラダイムは、変分量子アルゴリズム(VQA)である。
このようなランダム回路の幅広いクラスにおいて、コスト関数の変動範囲は、高い確率で量子ビット数で指数関数的に消えることを示す。
この結果は、勾配に基づく最適化と勾配のない最適化の制約を自然に統一し、VQAのトレーニングランドスケープに余分な厳しい制約を明らかにすることができる。
論文 参考訳(メタデータ) (2022-05-10T17:14:57Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
本稿では,量子状態の知識を必要とせず,量子回路の可換性を検証する回路指向対称性検証を提案する。
特に、従来の量子領域形式を回路指向安定化器に一般化するフーリエ時間安定化器(STS)手法を提案する。
論文 参考訳(メタデータ) (2021-12-27T21:15:35Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
量子コンピューティングの標準的なアプローチは、古典的にシミュレート可能なフォールトトレラントな演算セットを促進するという考え方に基づいている。
量子回路の古典的準確率シミュレーションをどのように促進するかを示す。
論文 参考訳(メタデータ) (2021-03-12T20:58:41Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z) - Minimizing estimation runtime on noisy quantum computers [0.0]
ベイズ推論の実行には、ELF(Engineered chance function)が用いられる。
物理ハードウェアがノイズの多い量子コンピュータの仕組みから遷移するにつれて,ELF形式がサンプリングにおける情報ゲイン率をいかに向上させるかを示す。
この技術は、化学、材料、ファイナンスなどを含む多くの量子アルゴリズムの中心的なコンポーネントを高速化する。
論文 参考訳(メタデータ) (2020-06-16T17:46:18Z) - Policy Gradient based Quantum Approximate Optimization Algorithm [2.5614220901453333]
本稿では,QAOAの変動パラメータをノイズキャンバス方式で最適化するために,政策段階に基づく強化学習アルゴリズムが適していることを示す。
単一および多ビット系における量子状態伝達問題に対するアルゴリズムの性能解析を行う。
論文 参考訳(メタデータ) (2020-02-04T00:46:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。