Model Developmental Safety: A Safety-Centric Method and Applications in Vision-Language Models
- URL: http://arxiv.org/abs/2410.03955v2
- Date: Sun, 13 Oct 2024 00:48:38 GMT
- Title: Model Developmental Safety: A Safety-Centric Method and Applications in Vision-Language Models
- Authors: Gang Li, Wendi Yu, Yao Yao, Wei Tong, Yingbin Liang, Qihang Lin, Tianbao Yang,
- Abstract summary: We study how to develop a pretrained vision-language model (aka the CLIP model) for acquiring new capabilities or improving existing capabilities of image classification.
Our experiments on improving vision perception capabilities on autonomous driving and scene recognition datasets demonstrate the efficacy of the proposed approach.
- Score: 75.8161094916476
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the real world, a learning-enabled system usually undergoes multiple cycles of model development to enhance the system's ability to handle difficult or emerging tasks. This continual model development process raises a significant issue that the model development for acquiring new or improving existing capabilities may inadvertently lose capabilities of the old model, also known as catastrophic forgetting. Existing continual learning studies focus on mitigating catastrophic forgetting by trading off performance on previous tasks and new tasks to ensure good average performance. However, they are inadequate for many applications especially in safety-critical domains, as failure to strictly preserve the performance of the old model not only introduces safety risks and uncertainties but also imposes substantial expenses in the re-improving and re-validation of existing properties. To address this issue, we introduce model developmental safety as a guarantee of a learning system such that in the model development process the new model should strictly preserve the existing protected capabilities of the old model while improving its performance on target tasks. To ensure the model developmental safety, we present a safety-centric framework by formulating the model developmental safety as data-dependent constraints. Under this framework, we study how to develop a pretrained vision-language model (aka the CLIP model) for acquiring new capabilities or improving existing capabilities of image classification. We propose an efficient constrained optimization algorithm with theoretical guarantee and use its insights to finetune a CLIP model with task-dependent heads for promoting the model developmental safety. Our experiments on improving vision perception capabilities on autonomous driving and scene recognition datasets demonstrate the efficacy of the proposed approach.
Related papers
- Self-Improvement in Language Models: The Sharpening Mechanism [70.9248553790022]
We offer a new perspective on the capabilities of self-improvement through a lens we refer to as sharpening.
Motivated by the observation that language models are often better at verifying response quality than they are at generating correct responses, we formalize self-improvement as using the model itself as a verifier during post-training.
We analyze two natural families of self-improvement algorithms based on SFT and RLHF.
arXiv Detail & Related papers (2024-12-02T20:24:17Z) - Learning-based Models for Vulnerability Detection: An Extensive Study [3.1317409221921144]
We extensively and comprehensively investigate two types of state-of-the-art learning-based approaches.
We experimentally demonstrate the priority of sequence-based models and the limited abilities of both graph-based models.
arXiv Detail & Related papers (2024-08-14T13:01:30Z) - Safe Deep Model-Based Reinforcement Learning with Lyapunov Functions [2.50194939587674]
We propose a new Model-based RL framework to enable efficient policy learning with unknown dynamics.
We introduce and explore a novel method for adding safety constraints for model-based RL during training and policy learning.
arXiv Detail & Related papers (2024-05-25T11:21:12Z) - Robustness-Congruent Adversarial Training for Secure Machine Learning
Model Updates [13.911586916369108]
We show that misclassifications in machine-learning models can affect robustness to adversarial examples.
We propose a technique, named robustness-congruent adversarial training, to address this issue.
We show that our algorithm and, more generally, learning with non-regression constraints, provides a theoretically-grounded framework to train consistent estimators.
arXiv Detail & Related papers (2024-02-27T10:37:13Z) - Data Quality Aware Approaches for Addressing Model Drift of Semantic
Segmentation Models [1.6385815610837167]
This study investigates two prominent quality aware strategies to combat model drift.
The former leverages image quality assessment metrics to meticulously select high-quality training data, improving the model robustness.
The latter makes use of learned vectors feature from existing models to guide the selection of future data, aligning it with the model's prior knowledge.
arXiv Detail & Related papers (2024-02-11T18:01:52Z) - Deep autoregressive density nets vs neural ensembles for model-based
offline reinforcement learning [2.9158689853305693]
We consider a model-based reinforcement learning algorithm that infers the system dynamics from the available data and performs policy optimization on imaginary model rollouts.
This approach is vulnerable to exploiting model errors which can lead to catastrophic failures on the real system.
We show that better performance can be obtained with a single well-calibrated autoregressive model on the D4RL benchmark.
arXiv Detail & Related papers (2024-02-05T10:18:15Z) - Continual Learners are Incremental Model Generalizers [70.34479702177988]
This paper extensively studies the impact of Continual Learning (CL) models as pre-trainers.
We find that the transfer quality of the representation often increases gradually without noticeable degradation in fine-tuning performance.
We propose a new fine-tuning scheme, GLobal Attention Discretization (GLAD), that preserves rich task-generic representation during solving downstream tasks.
arXiv Detail & Related papers (2023-06-21T05:26:28Z) - Model Reprogramming: Resource-Efficient Cross-Domain Machine Learning [65.268245109828]
In data-rich domains such as vision, language, and speech, deep learning prevails to deliver high-performance task-specific models.
Deep learning in resource-limited domains still faces multiple challenges including (i) limited data, (ii) constrained model development cost, and (iii) lack of adequate pre-trained models for effective finetuning.
Model reprogramming enables resource-efficient cross-domain machine learning by repurposing a well-developed pre-trained model from a source domain to solve tasks in a target domain without model finetuning.
arXiv Detail & Related papers (2022-02-22T02:33:54Z) - On the model-based stochastic value gradient for continuous
reinforcement learning [50.085645237597056]
We show that simple model-based agents can outperform state-of-the-art model-free agents in terms of both sample-efficiency and final reward.
Our findings suggest that model-based policy evaluation deserves closer attention.
arXiv Detail & Related papers (2020-08-28T17:58:29Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
One of the fundamental challenges in using a learned forward dynamics model is the mismatch between the objective of the learned model and that of the downstream planner or policy.
We propose to direct prediction towards task relevant information, enabling the model to be aware of the current task and encouraging it to only model relevant quantities of the state space.
We find that our method more effectively models the relevant parts of the scene conditioned on the goal, and as a result outperforms standard task-agnostic dynamics models and model-free reinforcement learning.
arXiv Detail & Related papers (2020-07-14T16:42:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.