A Retention-Centric Framework for Continual Learning with Guaranteed Model Developmental Safety
- URL: http://arxiv.org/abs/2410.03955v4
- Date: Sat, 19 Apr 2025 02:00:47 GMT
- Title: A Retention-Centric Framework for Continual Learning with Guaranteed Model Developmental Safety
- Authors: Gang Li, Wendi Yu, Yao Yao, Wei Tong, Yingbin Liang, Qihang Lin, Tianbao Yang,
- Abstract summary: In real-world applications, learning-enabled systems often undergo iterative model development to address challenging or emerging tasks.<n>New or improving existing capabilities may inadvertently lose good capabilities of the old model, also known as catastrophic forgetting.<n>We propose a retention-centric framework with data-dependent constraints, and study how to continually develop a pretrained CLIP model for acquiring new or improving existing capabilities of image classification.
- Score: 75.8161094916476
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In real-world applications, learning-enabled systems often undergo iterative model development to address challenging or emerging tasks, which involve collecting new data, training a new model and validating the model. This continual model development process raises a significant issue that acquiring new or improving existing capabilities may inadvertently lose good capabilities of the old model, also known as catastrophic forgetting. While existing continual learning aims to mitigate catastrophic forgetting by trading off performance on previous tasks and new tasks to ensure good average performance, it often falls short in cost-sensitive applications, where failing to preserve essential established capabilities introduces unforeseen costs and risks and substantial expenses for re-improving these capabilities. To address this issue, we impose a requirement on learning systems to ensure that a new model strictly retains important capabilities of the old model while improving target-task performance, which we term model developmental safety. To ensure model developmental safety, we propose a retention-centric framework with data-dependent constraints, and study how to continually develop a pretrained CLIP model for acquiring new or improving existing capabilities of image classification. We propose an efficient constrained optimization algorithm with theoretical guarantees and use its insights to finetune the CLIP model with task-dependent heads for promoting the model developmental safety. Experiments on autonomous driving and scene recognition datasets validate the efficacy of our method.
Related papers
- New Emerged Security and Privacy of Pre-trained Model: a Survey and Outlook [54.24701201956833]
Security and privacy issues have undermined users' confidence in pre-trained models.
Current literature lacks a clear taxonomy of emerging attacks and defenses for pre-trained models.
This taxonomy categorizes attacks and defenses into No-Change, Input-Change, and Model-Change approaches.
arXiv Detail & Related papers (2024-11-12T10:15:33Z) - Merge to Learn: Efficiently Adding Skills to Language Models with Model Merging [102.16497861225358]
Adapting general-purpose language models to new skills is currently an expensive process.
We investigate the effectiveness of adding new skills to preexisting models by training on the new skills in isolation and later merging with the general model.
arXiv Detail & Related papers (2024-10-16T18:23:50Z) - Active Learning for Robust and Representative LLM Generation in Safety-Critical Scenarios [32.16984263644299]
Large Language Models (LLMs) can generate valuable data for safety measures, but often exhibit distributional biases.
We propose a novel framework that integrates active learning with clustering to guide LLM generation.
Our results show that the proposed framework produces a more representative set of safety scenarios without requiring prior knowledge of the underlying data distribution.
arXiv Detail & Related papers (2024-10-14T21:48:14Z) - Learning-based Models for Vulnerability Detection: An Extensive Study [3.1317409221921144]
We extensively and comprehensively investigate two types of state-of-the-art learning-based approaches.
We experimentally demonstrate the priority of sequence-based models and the limited abilities of both graph-based models.
arXiv Detail & Related papers (2024-08-14T13:01:30Z) - Safe Deep Model-Based Reinforcement Learning with Lyapunov Functions [2.50194939587674]
We propose a new Model-based RL framework to enable efficient policy learning with unknown dynamics.
We introduce and explore a novel method for adding safety constraints for model-based RL during training and policy learning.
arXiv Detail & Related papers (2024-05-25T11:21:12Z) - Robustness-Congruent Adversarial Training for Secure Machine Learning
Model Updates [13.911586916369108]
We show that misclassifications in machine-learning models can affect robustness to adversarial examples.
We propose a technique, named robustness-congruent adversarial training, to address this issue.
We show that our algorithm and, more generally, learning with non-regression constraints, provides a theoretically-grounded framework to train consistent estimators.
arXiv Detail & Related papers (2024-02-27T10:37:13Z) - Data Quality Aware Approaches for Addressing Model Drift of Semantic
Segmentation Models [1.6385815610837167]
This study investigates two prominent quality aware strategies to combat model drift.
The former leverages image quality assessment metrics to meticulously select high-quality training data, improving the model robustness.
The latter makes use of learned vectors feature from existing models to guide the selection of future data, aligning it with the model's prior knowledge.
arXiv Detail & Related papers (2024-02-11T18:01:52Z) - Deep autoregressive density nets vs neural ensembles for model-based
offline reinforcement learning [2.9158689853305693]
We consider a model-based reinforcement learning algorithm that infers the system dynamics from the available data and performs policy optimization on imaginary model rollouts.
This approach is vulnerable to exploiting model errors which can lead to catastrophic failures on the real system.
We show that better performance can be obtained with a single well-calibrated autoregressive model on the D4RL benchmark.
arXiv Detail & Related papers (2024-02-05T10:18:15Z) - Temporal Knowledge Distillation for Time-Sensitive Financial Services
Applications [7.1795069620810805]
Anomaly detection is frequently used in key compliance and risk functions such as financial crime detection fraud and cybersecurity.
Keeping up with the rapid changes by retraining the models with the latest data patterns introduces pressures in balancing the historical and current patterns.
The proposed approach provides advantages in retraining times while improving the model performance.
arXiv Detail & Related papers (2023-12-28T03:04:30Z) - Learn from the Past: A Proxy Guided Adversarial Defense Framework with
Self Distillation Regularization [53.04697800214848]
Adversarial Training (AT) is pivotal in fortifying the robustness of deep learning models.
AT methods, relying on direct iterative updates for target model's defense, frequently encounter obstacles such as unstable training and catastrophic overfitting.
We present a general proxy guided defense framework, LAST' (bf Learn from the Pbf ast)
arXiv Detail & Related papers (2023-10-19T13:13:41Z) - Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
Continual learning seeks to overcome the challenge of catastrophic forgetting, where a model forgets previously learnt information.
We introduce a novel prior-based method that better constrains parameter growth, reducing catastrophic forgetting.
Results show that BAdam achieves state-of-the-art performance for prior-based methods on challenging single-headed class-incremental experiments.
arXiv Detail & Related papers (2023-09-15T17:10:51Z) - Continual Learners are Incremental Model Generalizers [70.34479702177988]
This paper extensively studies the impact of Continual Learning (CL) models as pre-trainers.
We find that the transfer quality of the representation often increases gradually without noticeable degradation in fine-tuning performance.
We propose a new fine-tuning scheme, GLobal Attention Discretization (GLAD), that preserves rich task-generic representation during solving downstream tasks.
arXiv Detail & Related papers (2023-06-21T05:26:28Z) - Model Reprogramming: Resource-Efficient Cross-Domain Machine Learning [65.268245109828]
In data-rich domains such as vision, language, and speech, deep learning prevails to deliver high-performance task-specific models.
Deep learning in resource-limited domains still faces multiple challenges including (i) limited data, (ii) constrained model development cost, and (iii) lack of adequate pre-trained models for effective finetuning.
Model reprogramming enables resource-efficient cross-domain machine learning by repurposing a well-developed pre-trained model from a source domain to solve tasks in a target domain without model finetuning.
arXiv Detail & Related papers (2022-02-22T02:33:54Z) - On the model-based stochastic value gradient for continuous
reinforcement learning [50.085645237597056]
We show that simple model-based agents can outperform state-of-the-art model-free agents in terms of both sample-efficiency and final reward.
Our findings suggest that model-based policy evaluation deserves closer attention.
arXiv Detail & Related papers (2020-08-28T17:58:29Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
One of the fundamental challenges in using a learned forward dynamics model is the mismatch between the objective of the learned model and that of the downstream planner or policy.
We propose to direct prediction towards task relevant information, enabling the model to be aware of the current task and encouraging it to only model relevant quantities of the state space.
We find that our method more effectively models the relevant parts of the scene conditioned on the goal, and as a result outperforms standard task-agnostic dynamics models and model-free reinforcement learning.
arXiv Detail & Related papers (2020-07-14T16:42:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.