Symmetry From Scratch: Group Equivariance as a Supervised Learning Task
- URL: http://arxiv.org/abs/2410.03989v1
- Date: Sat, 5 Oct 2024 00:44:09 GMT
- Title: Symmetry From Scratch: Group Equivariance as a Supervised Learning Task
- Authors: Haozhe Huang, Leo Kaixuan Cheng, Kaiwen Chen, Alán Aspuru-Guzik,
- Abstract summary: In machine learning datasets with symmetries, the paradigm for backward compatibility with symmetry-breaking has been to relax equivariant architectural constraints.
We introduce symmetry-cloning, a method for inducing equivariance in machine learning models.
- Score: 1.8570740863168362
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In machine learning datasets with symmetries, the paradigm for backward compatibility with symmetry-breaking has been to relax equivariant architectural constraints, engineering extra weights to differentiate symmetries of interest. However, this process becomes increasingly over-engineered as models are geared towards specific symmetries/asymmetries hardwired of a particular set of equivariant basis functions. In this work, we introduce symmetry-cloning, a method for inducing equivariance in machine learning models. We show that general machine learning architectures (i.e., MLPs) can learn symmetries directly as a supervised learning task from group equivariant architectures and retain/break the learned symmetry for downstream tasks. This simple formulation enables machine learning models with group-agnostic architectures to capture the inductive bias of group-equivariant architectures.
Related papers
- A Generative Model of Symmetry Transformations [44.87295754993983]
We build a generative model that explicitly aims to capture the data's approximate symmetries.
We empirically demonstrate its ability to capture symmetries under affine and color transformations.
arXiv Detail & Related papers (2024-03-04T11:32:18Z) - A Unified Framework to Enforce, Discover, and Promote Symmetry in Machine Learning [5.1105250336911405]
We provide a unifying theoretical and methodological framework for incorporating symmetry into machine learning models.
We show that enforcing and discovering symmetry are linear-algebraic tasks that are dual with respect to the bilinear structure of the Lie derivative.
We propose a novel way to promote symmetry by introducing a class of convex regularization functions based on the Lie derivative and nuclear norm relaxation.
arXiv Detail & Related papers (2023-11-01T01:19:54Z) - Learning Probabilistic Symmetrization for Architecture Agnostic Equivariance [16.49488981364657]
We present a novel framework to overcome the limitations of equivariant architectures in learning functions with group symmetries.
We use an arbitrary base model such as anvariant or a transformer and symmetrize it to be equivariant to the given group.
Empirical tests show competitive results against tailored equivariant architectures.
arXiv Detail & Related papers (2023-06-05T13:40:54Z) - Regularizing Towards Soft Equivariance Under Mixed Symmetries [23.603875905608565]
We present a regularizer-based method for building a model for a dataset with mixed approximate symmetries.
We show that our method achieves better accuracy than prior approaches while discovering the approximate symmetry levels correctly.
arXiv Detail & Related papers (2023-06-01T05:33:41Z) - FAENet: Frame Averaging Equivariant GNN for Materials Modeling [123.19473575281357]
We introduce a flexible framework relying on frameaveraging (SFA) to make any model E(3)-equivariant or invariant through data transformations.
We prove the validity of our method theoretically and empirically demonstrate its superior accuracy and computational scalability in materials modeling.
arXiv Detail & Related papers (2023-04-28T21:48:31Z) - Oracle-Preserving Latent Flows [58.720142291102135]
We develop a methodology for the simultaneous discovery of multiple nontrivial continuous symmetries across an entire labelled dataset.
The symmetry transformations and the corresponding generators are modeled with fully connected neural networks trained with a specially constructed loss function.
The two new elements in this work are the use of a reduced-dimensionality latent space and the generalization to transformations invariant with respect to high-dimensional oracles.
arXiv Detail & Related papers (2023-02-02T00:13:32Z) - Deep Learning Symmetries and Their Lie Groups, Algebras, and Subalgebras
from First Principles [55.41644538483948]
We design a deep-learning algorithm for the discovery and identification of the continuous group of symmetries present in a labeled dataset.
We use fully connected neural networks to model the transformations symmetry and the corresponding generators.
Our study also opens the door for using a machine learning approach in the mathematical study of Lie groups and their properties.
arXiv Detail & Related papers (2023-01-13T16:25:25Z) - The Surprising Effectiveness of Equivariant Models in Domains with
Latent Symmetry [6.716931832076628]
We show that imposing symmetry constraints that do not exactly match the domain symmetry is very helpful in learning the true symmetry in the environment.
We demonstrate that an equivariant model can significantly outperform non-equivariant methods on domains with latent symmetries both in supervised learning and in reinforcement learning for robotic manipulation and control problems.
arXiv Detail & Related papers (2022-11-16T21:51:55Z) - Symmetry Group Equivariant Architectures for Physics [52.784926970374556]
In the domain of machine learning, an awareness of symmetries has driven impressive performance breakthroughs.
We argue that both the physics community and the broader machine learning community have much to understand.
arXiv Detail & Related papers (2022-03-11T18:27:04Z) - Meta-Learning Symmetries by Reparameterization [63.85144439337671]
We present a method for learning and encoding equivariances into networks by learning corresponding parameter sharing patterns from data.
Our experiments suggest that it can automatically learn to encode equivariances to common transformations used in image processing tasks.
arXiv Detail & Related papers (2020-07-06T17:59:54Z) - Inverse Learning of Symmetries [71.62109774068064]
We learn the symmetry transformation with a model consisting of two latent subspaces.
Our approach is based on the deep information bottleneck in combination with a continuous mutual information regulariser.
Our model outperforms state-of-the-art methods on artificial and molecular datasets.
arXiv Detail & Related papers (2020-02-07T13:48:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.