論文の概要: EndoPerfect: High-Accuracy Monocular Depth Estimation and 3D Reconstruction for Endoscopic Surgery via NeRF-Stereo Fusion
- arxiv url: http://arxiv.org/abs/2410.04041v5
- Date: Fri, 28 Feb 2025 06:45:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-03 13:37:36.365398
- Title: EndoPerfect: High-Accuracy Monocular Depth Estimation and 3D Reconstruction for Endoscopic Surgery via NeRF-Stereo Fusion
- Title(参考訳): NeRF-Stereo Fusion を用いた内視鏡手術における高精度単眼深度推定と3次元再構成
- Authors: Pengcheng Chen, Wenhao Li, Nicole Gunderson, Jeremy Ruthberg, Randall Bly, Zhenglong Sun, Waleed M. Abuzeid, Eric J. Seibel,
- Abstract要約: 内視鏡下副鼻腔手術(ESS)では,術中CTは術中評価に有用であるが,着床速度や放射線曝露に制約がある。
既存の技術は、しばしば密度の高い再建に必要なサブミリ精度を達成するのに苦労する。
本稿では,Neural Radiance Fields(NeRF)を中間表現として活用するオンライン学習手法を提案する。
提案手法では,0.5mm未満の点間精度が0.125$pm$0.443mmであることを示す。
- 参考スコア(独自算出の注目度): 11.798218793025974
- License:
- Abstract: In endoscopic sinus surgery (ESS), intraoperative CT (iCT) offers valuable intraoperative assessment but is constrained by slow deployment and radiation exposure, limiting its clinical utility. Endoscope-based monocular 3D reconstruction is a promising alternative; however, existing techniques often struggle to achieve the submillimeter precision required for dense reconstruction. In this work, we propose an iterative online learning approach that leverages Neural Radiance Fields (NeRF) as an intermediate representation, enabling monocular depth estimation and 3D reconstruction without relying on prior medical data. Our method attains a point-to-point accuracy below 0.5 mm, with a demonstrated theoretical depth accuracy of 0.125 $\pm$ 0.443 mm. We validate our approach across synthetic, phantom, and real endoscopic scenarios, confirming its accuracy and reliability. These results underscore the potential of our pipeline as an iCT alternative, meeting the demanding submillimeter accuracy standards required in ESS.
- Abstract(参考訳): 内視鏡下副鼻腔手術(Electroscopic sinus surgery, ESS)では, 術中CT(Intraoperative CT, ICT)が有用であるが, 放射線照射が遅く, 臨床的有用性に制限されている。
内視鏡による単分子3D再構成は有望な代替手段であるが,既存の技術は高密度再構成に必要なサブミリ精度の達成に苦慮することが多い。
本研究では,NeRF(Neural Radiance Fields)を中間表現として活用した反復型オンライン学習手法を提案する。
提案手法では,0.5mm未満の点間精度が0.125 $\pm$ 0.443 mmであることを示す。
我々は,その正確さと信頼性を確認し,人工,幻,実際の内視鏡的シナリオにまたがるアプローチを検証する。
これらの結果は, ESSで要求されるサブミリ単位の精度基準を満たすため, iCT代替品としてのパイプラインの可能性を強調した。
関連論文リスト
- Advancing Depth Anything Model for Unsupervised Monocular Depth Estimation in Endoscopy [3.1186464715409983]
本稿では,Depth Anything Modelのための新しい微調整戦略を提案する。
本手法は本態性に基づく教師なし単眼深度推定フレームワークと統合する。
SCAREDデータセットで得られた結果は,本手法が最先端の性能を実現することを示す。
論文 参考訳(メタデータ) (2024-09-12T03:04:43Z) - Enhanced Scale-aware Depth Estimation for Monocular Endoscopic Scenes with Geometric Modeling [42.70053750500301]
本稿では,幾何学的モデリングによる深度推定のための単眼画像のみを用いた新しいスケールアウェアフレームワークを提案する。
具体的には、まず、単分子深度推定の品質を高めるための多分解能深度融合戦略を提案する。
スケール係数と相対深度推定を結合することにより、単眼内視鏡シーンのスケール認識深度を推定できる。
論文 参考訳(メタデータ) (2024-08-14T03:18:04Z) - ToDER: Towards Colonoscopy Depth Estimation and Reconstruction with Geometry Constraint Adaptation [67.22294293695255]
そこで本稿では,ToDERという双方向適応アーキテクチャを用いて,高精度な深度推定を行う新しいパイプラインを提案する。
以上の結果から,本手法は実写および合成大腸内視鏡ビデオの深度マップを精度良く予測できることが示唆された。
論文 参考訳(メタデータ) (2024-07-23T14:24:26Z) - High-fidelity Endoscopic Image Synthesis by Utilizing Depth-guided Neural Surfaces [18.948630080040576]
内視鏡画像に適用したNeuSを1フレームの深度マップで補足した新しい大腸部分再建法を提案する。
本手法は, 大腸切片を完全にレンダリングし, 表面の見えない部分を捕捉する際の異常な精度を示す。
このブレークスルーは、安定的で一貫してスケールされた再建を達成するための道を開き、がんスクリーニングの手順と治療介入の質を高めることを約束する。
論文 参考訳(メタデータ) (2024-04-20T18:06:26Z) - EyeLS: Shadow-Guided Instrument Landing System for Intraocular Target
Approaching in Robotic Eye Surgery [51.05595735405451]
ロボット眼科手術(Robotic Ophthalmic surgery)は、網膜下注入における網膜侵入や網膜剥離における浮動組織の除去など、高精度な介入を促進する新しい技術である。
現在の画像に基づく手法では、針先端の軌跡を網膜と浮動標的の両方に向けて効果的に推定することはできない。
本研究では,ターゲットの影位置と楽器先端を用いて相対的な深度位置を推定する。
手術シミュレータでは, 平均深度0.0127mm, 平均深度0.3473mm, 平均深度0.0127mm, 平均深度0.3473mmを目標とした。
論文 参考訳(メタデータ) (2023-11-15T09:11:37Z) - A Quantitative Evaluation of Dense 3D Reconstruction of Sinus Anatomy
from Monocular Endoscopic Video [8.32570164101507]
内視鏡的シーケンスと光学的トラッキングを用いた洞再建のための自己教師型アプローチの定量的解析を行った。
以上の結果から, 生成した復元は解剖学的に高い一致を示し, 平均点間誤差は0.91mmであった。
ポーズと深さ推定の不正確さがこの誤りに等しく寄与し、より短い軌跡を持つ局所的に一貫したシーケンスがより正確な再構成をもたらすことを確認した。
論文 参考訳(メタデータ) (2023-10-22T17:11:40Z) - A geometry-aware deep network for depth estimation in monocular
endoscopy [17.425158094539462]
提案手法は,異なるデータセットと臨床画像にまたがって広範囲に検証されている。
提案法の平均RMSE値は12.604(T1-L1)、9.930(T2-L2)、13.893(Colon)である。
論文 参考訳(メタデータ) (2023-04-20T11:59:32Z) - 3D Reconstruction of Curvilinear Structures with Stereo Matching
DeepConvolutional Neural Networks [52.710012864395246]
本稿では,立体対における曲線構造の検出とマッチングのための完全自動パイプラインを提案する。
主に、TEM画像のステレオ対から転位を3次元再構成することに焦点を当てる。
論文 参考訳(メタデータ) (2021-10-14T23:05:47Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
CTスライスにおける普遍的病変検出のための3Dコンテキスト強化2D特徴を効率的に抽出するための修飾擬似3次元特徴ピラミッドネットワーク(MP3D FPN)を提案する。
新たな事前学習手法により,提案したMP3D FPNは,DeepLesionデータセット上での最先端検出性能を実現する。
提案された3Dプリトレーニングウェイトは、他の3D医療画像分析タスクのパフォーマンスを高めるために使用できる。
論文 参考訳(メタデータ) (2020-12-16T07:11:16Z) - 4D Spatio-Temporal Convolutional Networks for Object Position Estimation
in OCT Volumes [69.62333053044712]
3次元畳み込みニューラルネットワーク(CNN)は、単一のOCT画像を用いたマーカーオブジェクトのポーズ推定に有望な性能を示した。
我々は3次元CNNを4次元時間CNNに拡張し、マーカーオブジェクト追跡のための追加の時間情報の影響を評価する。
論文 参考訳(メタデータ) (2020-07-02T12:02:20Z) - D3VO: Deep Depth, Deep Pose and Deep Uncertainty for Monocular Visual
Odometry [57.5549733585324]
D3VOは、深度、ポーズ、不確実性推定という3つのレベルでディープネットワークを利用する、単眼の視覚計測のための新しいフレームワークである。
まず,ステレオビデオを用いた自己監督型単眼深度推定ネットワークを提案する。
入力画像上の画素の光度不確かさをモデル化し、深度推定精度を向上させる。
論文 参考訳(メタデータ) (2020-03-02T17:47:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。