Dynamic Subset Tuning: Expanding the Operational Range of Parameter-Efficient Training for Large Language Models
- URL: http://arxiv.org/abs/2411.08610v1
- Date: Wed, 13 Nov 2024 13:53:10 GMT
- Title: Dynamic Subset Tuning: Expanding the Operational Range of Parameter-Efficient Training for Large Language Models
- Authors: Felix Stahlberg, Jared Lichtarge, Shankar Kumar,
- Abstract summary: We propose a novel parameter-efficient training (PET) method for large language models.
Unlike prior methods, this subset is not fixed in location but rather which parameters are modified over the course of training.
Our method enables a seamless scaling of the subset size across an arbitrary proportion of the total model size.
- Score: 14.762222323897978
- License:
- Abstract: We propose a novel parameter-efficient training (PET) method for large language models that adapts models to downstream tasks by optimizing a small subset of the existing model parameters. Unlike prior methods, this subset is not fixed in location but rather which parameters are modified evolves over the course of training. This dynamic parameter selection can yield good performance with many fewer parameters than extant methods. Our method enables a seamless scaling of the subset size across an arbitrary proportion of the total model size, while popular PET approaches like prompt tuning and LoRA cover only a small part of this spectrum. We match or outperform prompt tuning and LoRA in most cases on a variety of NLP tasks (MT, QA, GSM8K, SuperGLUE) for a given parameter budget across different model families and sizes.
Related papers
- FineGates: LLMs Finetuning with Compression using Stochastic Gates [7.093692674858257]
Large Language Models (LLMs) present significant challenges for full finetuning due to the high computational demands.
Lightweight finetuning techniques have been proposed, like learning low-rank adapter layers.
We propose an adaptor model based on gates that simultaneously sparsify the frozen base model with task-specific adaptation.
arXiv Detail & Related papers (2024-12-17T14:33:05Z) - LoRTA: Low Rank Tensor Adaptation of Large Language Models [70.32218116940393]
Low Rank Adaptation (LoRA) is a popular Efficient Fine Tuning (PEFT) method.
We propose a higher-order Candecomp/Parafac (CP) decomposition, enabling a more compact and flexible representation.
Our method can achieve a reduction in the number of parameters while maintaining comparable performance.
arXiv Detail & Related papers (2024-10-05T06:59:50Z) - SaRA: High-Efficient Diffusion Model Fine-tuning with Progressive Sparse Low-Rank Adaptation [52.6922833948127]
In this work, we investigate the importance of parameters in pre-trained diffusion models.
We propose a novel model fine-tuning method to make full use of these ineffective parameters.
Our method enhances the generative capabilities of pre-trained models in downstream applications.
arXiv Detail & Related papers (2024-09-10T16:44:47Z) - Scaling Exponents Across Parameterizations and Optimizers [94.54718325264218]
We propose a new perspective on parameterization by investigating a key assumption in prior work.
Our empirical investigation includes tens of thousands of models trained with all combinations of threes.
We find that the best learning rate scaling prescription would often have been excluded by the assumptions in prior work.
arXiv Detail & Related papers (2024-07-08T12:32:51Z) - Improving generalization in large language models by learning prefix
subspaces [5.911540700785975]
This article focuses on large language models (LLMs) fine-tuning in the scarce data regime (also known as the "few-shot" learning setting)
We propose a method to increase the generalization capabilities of LLMs based on neural network subspaces.
arXiv Detail & Related papers (2023-10-24T12:44:09Z) - Exploring the Impact of Model Scaling on Parameter-Efficient Tuning [100.61202305296275]
Scaling-efficient tuning (PET) methods can effectively drive extremely large pre-trained language models (PLMs)
In small PLMs, there are usually noticeable performance differences among PET methods.
We introduce a more flexible PET method called Arbitrary PET (APET) method.
arXiv Detail & Related papers (2023-06-04T10:10:54Z) - AdaLoRA: Adaptive Budget Allocation for Parameter-Efficient Fine-Tuning [143.23123791557245]
Fine-tuning large pre-trained language models on downstream tasks has become an important paradigm in NLP.
We propose AdaLoRA, which adaptively allocates the parameter budget among weight matrices according to their importance score.
We conduct extensive experiments with several pre-trained models on natural language processing, question answering, and natural language generation to validate the effectiveness of AdaLoRA.
arXiv Detail & Related papers (2023-03-18T22:36:25Z) - Parameter-Efficient Tuning with Special Token Adaptation [25.37998979962568]
PASTA achieves comparable performance to fine-tuning in natural language understanding tasks.
Our work demonstrates the pivotal role of special tokens in pretrained language models.
arXiv Detail & Related papers (2022-10-10T01:02:51Z) - UniPELT: A Unified Framework for Parameter-Efficient Language Model
Tuning [64.638804236566]
We propose a unified framework, UniPELT, which incorporates different PELT methods as submodules and learns to activate the ones that best suit the current data or task setup.
Remarkably, on the GLUE benchmark, UniPELT consistently achieves 13pt gains compared to the best individual PELT method that it incorporates and even outperforms fine-tuning under different setups.
arXiv Detail & Related papers (2021-10-14T17:40:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.