論文の概要: Chart-to-Text: A Large-Scale Benchmark for Chart Summarization
- arxiv url: http://arxiv.org/abs/2203.06486v1
- Date: Sat, 12 Mar 2022 17:01:38 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-19 19:41:30.868676
- Title: Chart-to-Text: A Large-Scale Benchmark for Chart Summarization
- Title(参考訳): Chart-to-Text: グラフ要約のための大規模ベンチマーク
- Authors: Shankar Kanthara, Rixie Tiffany Ko Leong, Xiang Lin, Ahmed Masry, Megh
Thakkar, Enamul Hoque, Shafiq Joty
- Abstract要約: 2つのデータセットと44,096のチャートを持つ大規模ベンチマークであるChart-to-textを提示する。
データセット構築プロセスを説明し、データセットを解析する。
- 参考スコア(独自算出の注目度): 9.647079534077472
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Charts are commonly used for exploring data and communicating insights.
Generating natural language summaries from charts can be very helpful for
people in inferring key insights that would otherwise require a lot of
cognitive and perceptual efforts. We present Chart-to-text, a large-scale
benchmark with two datasets and a total of 44,096 charts covering a wide range
of topics and chart types. We explain the dataset construction process and
analyze the datasets. We also introduce a number of state-of-the-art neural
models as baselines that utilize image captioning and data-to-text generation
techniques to tackle two problem variations: one assumes the underlying data
table of the chart is available while the other needs to extract data from
chart images. Our analysis with automatic and human evaluation shows that while
our best models usually generate fluent summaries and yield reasonable BLEU
scores, they also suffer from hallucinations and factual errors as well as
difficulties in correctly explaining complex patterns and trends in charts.
- Abstract(参考訳): チャートはデータ探索や洞察の伝達に一般的に使用される。
グラフから自然言語要約を生成することは、多くの認知的および知覚的努力を必要とする重要な洞察を推測する人々にとって非常に役立つ。
2つのデータセットと44,096のチャートを持つ大規模ベンチマークであるChart-to-textを紹介します。
データセット構築プロセスを説明し、データセットを分析する。
また,画像キャプションとデータツーテキスト生成技術を用いて2つの問題に対処可能なベースラインとして,最先端のニューラルモデルをいくつか紹介する。
自動評価と人的評価を用いて分析した結果,我々の最善のモデルは通常,流行った要約を生成し,合理的なbleuスコアを得るが,幻覚や事実的誤りに苦しむだけでなく,複雑なパターンや傾向を正しく説明することが困難であることがわかった。
関連論文リスト
- On Pre-training of Multimodal Language Models Customized for Chart Understanding [83.99377088129282]
本稿では,MLLMのチャート理解を改善するために必要な学習過程について考察する。
詳細なチャート理解に適したMLLMであるCHOPINLLMを紹介する。
論文 参考訳(メタデータ) (2024-07-19T17:58:36Z) - ChartGemma: Visual Instruction-tuning for Chart Reasoning in the Wild [28.643565008567172]
本稿では,PaliGemma上で開発された新しいチャート理解と推論モデルであるChartGemmaを紹介する。
基礎となるデータテーブルに頼るのではなく、ChartGemmaは、チャートイメージから直接生成されたインストラクションチューニングデータに基づいて訓練される。
我々の単純なアプローチは、チャートの要約、質問応答、ファクトチェックにまたがる5ドルのベンチマークで最先端の結果を得る。
論文 参考訳(メタデータ) (2024-07-04T22:16:40Z) - TinyChart: Efficient Chart Understanding with Visual Token Merging and Program-of-Thoughts Learning [83.58521787193293]
本稿では,3Bパラメータのみを用いたチャート理解のための効率的なMLLMであるTinyChartを提案する。
TinyChartは,1)プログラム・オブ・ソート(PoT)学習戦略による数値計算学習の負担軽減,2)ビジョン・トーケン・マージ・モジュールによる高解像度画像のためのビジョン・トランスフォーマーによって生成される長大な視覚特徴系列の削減という,効率的なチャート理解における2つの課題を克服した。
論文 参考訳(メタデータ) (2024-04-25T14:23:24Z) - ChartAssisstant: A Universal Chart Multimodal Language Model via
Chart-to-Table Pre-training and Multitask Instruction Tuning [54.89249749894061]
ChartAssistantは、ユニバーサルチャートの理解と推論のためのビジョン言語モデルである。
2段階のトレーニングプロセスを経て、チャートとテキストの調整のために、チャートからテーブルへのパースを事前トレーニングする。
実験により, 最先端UniChart法とChartllama法に比較して, 顕著な性能向上が得られた。
論文 参考訳(メタデータ) (2024-01-04T17:51:48Z) - ChartLlama: A Multimodal LLM for Chart Understanding and Generation [70.1393163657813]
GPT-4を利用した高品質な命令チューニングデータセットを作成する。
次に、生成したデータセットを使ってトレーニングしたマルチモーダルな大規模言語モデルであるChartLlamaを紹介します。
論文 参考訳(メタデータ) (2023-11-27T15:20:23Z) - StructChart: Perception, Structuring, Reasoning for Visual Chart
Understanding [58.38480335579541]
現在のチャート関連タスクは、視覚チャートから情報を抽出することを参照するチャート認識か、抽出されたデータから推論を行うかに焦点を当てている。
本稿では,共同認識と推論タスクのための統一的でラベル効率のよい学習パラダイムを確立することを目的とする。
各種のチャート関連タスクで実験を行い、統合されたチャート認識推論パラダイムの有効性と有望な可能性を実証した。
論文 参考訳(メタデータ) (2023-09-20T12:51:13Z) - UniChart: A Universal Vision-language Pretrained Model for Chart
Comprehension and Reasoning [29.947053208614246]
We present UniChart, a pretrained model for chart comprehension and reasoning。
UniChartは、チャートの関連するテキスト、データ、および視覚要素をエンコードし、その後、チャートグラウンドのテキストデコーダを使用して、自然言語で期待される出力を生成する。
i) チャートから視覚要素(バーや線など)とデータを抽出する低レベルタスク、(ii) チャート理解と推論のスキルを得るための高レベルタスクなどである。
論文 参考訳(メタデータ) (2023-05-24T06:11:17Z) - ChartSumm: A Comprehensive Benchmark for Automatic Chart Summarization
of Long and Short Summaries [0.26097841018267615]
テキスト要約の自動チャートは視覚障害者に有効なツールである。
本稿では,84,363個のグラフからなる大規模ベンチマークデータセットであるChartSummを提案する。
論文 参考訳(メタデータ) (2023-04-26T15:25:24Z) - ChartReader: A Unified Framework for Chart Derendering and Comprehension
without Heuristic Rules [89.75395046894809]
ChartReaderは、チャートのデレンダリングと理解タスクをシームレスに統合する統合フレームワークです。
提案手法には,トランスフォーマーに基づくチャートコンポーネント検出モジュールと,チャートからXまでのタスクに対する事前学習型視覚言語モデルが組み込まれている。
提案するフレームワークは,チャート解析に係わる作業を大幅に削減し,ユニバーサルチャート理解モデルへの一歩を踏み出すことができる。
論文 参考訳(メタデータ) (2023-04-05T00:25:27Z) - Chart-to-Text: Generating Natural Language Descriptions for Charts by
Adapting the Transformer Model [6.320141734801679]
我々は,新しいデータセットを導入し,グラフの自然言語要約を自動的に生成するニューラルモデルを提案する。
生成された要約は、チャートの解釈を提供し、そのチャートで見られる重要な洞察を伝える。
論文 参考訳(メタデータ) (2020-10-18T23:57:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。