On the Sample Complexity of a Policy Gradient Algorithm with Occupancy Approximation for General Utility Reinforcement Learning
- URL: http://arxiv.org/abs/2410.04108v1
- Date: Sat, 5 Oct 2024 10:24:07 GMT
- Title: On the Sample Complexity of a Policy Gradient Algorithm with Occupancy Approximation for General Utility Reinforcement Learning
- Authors: Anas Barakat, Souradip Chakraborty, Peihong Yu, Pratap Tokekar, Amrit Singh Bedi,
- Abstract summary: We propose to approximate occupancy measures within a function approximation class using maximum likelihood estimation (MLE)
We provide a sample complexity analysis of PG-OMA showing that our occupancy measure estimation error only scales with the dimension of our function approximation class rather than the size of the state action space.
- Score: 23.623705771223303
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement learning with general utilities has recently gained attention thanks to its ability to unify several problems, including imitation learning, pure exploration, and safe RL. However, prior work for solving this general problem in a unified way has mainly focused on the tabular setting. This is restrictive when considering larger state-action spaces because of the need to estimate occupancy measures during policy optimization. In this work, we address this issue and propose to approximate occupancy measures within a function approximation class using maximum likelihood estimation (MLE). We propose a simple policy gradient algorithm (PG-OMA) where an actor updates the policy parameters to maximize the general utility objective whereas a critic approximates the occupancy measure using MLE. We provide a sample complexity analysis of PG-OMA showing that our occupancy measure estimation error only scales with the dimension of our function approximation class rather than the size of the state action space. Under suitable assumptions, we establish first order stationarity and global optimality performance bounds for the proposed PG-OMA algorithm for nonconcave and concave general utilities respectively. We complement our methodological and theoretical findings with promising empirical results showing the scalability potential of our approach compared to existing tabular count-based approaches.
Related papers
- Last-Iterate Global Convergence of Policy Gradients for Constrained Reinforcement Learning [62.81324245896717]
We introduce an exploration-agnostic algorithm, called C-PG, which exhibits global last-ite convergence guarantees under (weak) gradient domination assumptions.
We numerically validate our algorithms on constrained control problems, and compare them with state-of-the-art baselines.
arXiv Detail & Related papers (2024-07-15T14:54:57Z) - Learning Optimal Deterministic Policies with Stochastic Policy Gradients [62.81324245896716]
Policy gradient (PG) methods are successful approaches to deal with continuous reinforcement learning (RL) problems.
In common practice, convergence (hyper)policies are learned only to deploy their deterministic version.
We show how to tune the exploration level used for learning to optimize the trade-off between the sample complexity and the performance of the deployed deterministic policy.
arXiv Detail & Related papers (2024-05-03T16:45:15Z) - Efficient Model-Free Exploration in Low-Rank MDPs [76.87340323826945]
Low-Rank Markov Decision Processes offer a simple, yet expressive framework for RL with function approximation.
Existing algorithms are either (1) computationally intractable, or (2) reliant upon restrictive statistical assumptions.
We propose the first provably sample-efficient algorithm for exploration in Low-Rank MDPs.
arXiv Detail & Related papers (2023-07-08T15:41:48Z) - Structural Estimation of Markov Decision Processes in High-Dimensional
State Space with Finite-Time Guarantees [39.287388288477096]
We consider the task of estimating a structural model of dynamic decisions by a human agent based upon the observable history of implemented actions and visited states.
This problem has an inherent nested structure: in the inner problem, an optimal policy for a given reward function is identified while in the outer problem, a measure of fit is maximized.
We propose a single-loop estimation algorithm with finite time guarantees that is equipped to deal with high-dimensional state spaces.
arXiv Detail & Related papers (2022-10-04T00:11:38Z) - Nearly Optimal Latent State Decoding in Block MDPs [74.51224067640717]
In episodic Block MDPs, the decision maker has access to rich observations or contexts generated from a small number of latent states.
We are first interested in estimating the latent state decoding function based on data generated under a fixed behavior policy.
We then study the problem of learning near-optimal policies in the reward-free framework.
arXiv Detail & Related papers (2022-08-17T18:49:53Z) - Offline Policy Optimization with Eligible Actions [34.4530766779594]
offline policy optimization could have a large impact on many real-world decision-making problems.
Importance sampling and its variants are a commonly used type of estimator in offline policy evaluation.
We propose an algorithm to avoid this overfitting through a new per-state-neighborhood normalization constraint.
arXiv Detail & Related papers (2022-07-01T19:18:15Z) - Amortized Conditional Normalized Maximum Likelihood: Reliable Out of
Distribution Uncertainty Estimation [99.92568326314667]
We propose the amortized conditional normalized maximum likelihood (ACNML) method as a scalable general-purpose approach for uncertainty estimation.
Our algorithm builds on the conditional normalized maximum likelihood (CNML) coding scheme, which has minimax optimal properties according to the minimum description length principle.
We demonstrate that ACNML compares favorably to a number of prior techniques for uncertainty estimation in terms of calibration on out-of-distribution inputs.
arXiv Detail & Related papers (2020-11-05T08:04:34Z) - Cooperative Multi-Agent Reinforcement Learning with Partial Observations [16.895704973433382]
We propose a distributed zeroth-order policy optimization method for Multi-Agent Reinforcement Learning (MARL)
It allows the agents to compute the local policy gradients needed to update their local policy functions using local estimates of the global accumulated rewards.
We show that the proposed distributed zeroth-order policy optimization method with constant stepsize converges to the neighborhood of a policy that is a stationary point of the global objective function.
arXiv Detail & Related papers (2020-06-18T19:36:22Z) - Discrete Action On-Policy Learning with Action-Value Critic [72.20609919995086]
Reinforcement learning (RL) in discrete action space is ubiquitous in real-world applications, but its complexity grows exponentially with the action-space dimension.
We construct a critic to estimate action-value functions, apply it on correlated actions, and combine these critic estimated action values to control the variance of gradient estimation.
These efforts result in a new discrete action on-policy RL algorithm that empirically outperforms related on-policy algorithms relying on variance control techniques.
arXiv Detail & Related papers (2020-02-10T04:23:09Z) - A Nonparametric Off-Policy Policy Gradient [32.35604597324448]
Reinforcement learning (RL) algorithms still suffer from high sample complexity despite outstanding recent successes.
We build on the general sample efficiency of off-policy algorithms.
We show that our approach has better sample efficiency than state-of-the-art policy gradient methods.
arXiv Detail & Related papers (2020-01-08T10:13:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.