Measure Theoretic Approach to Nonuniform Learnability
- URL: http://arxiv.org/abs/2011.00392v1
- Date: Sun, 1 Nov 2020 01:03:26 GMT
- Title: Measure Theoretic Approach to Nonuniform Learnability
- Authors: Ankit Bandyopadhyay
- Abstract summary: characterization of nonuniform learnability has been redefined using the measure theoretic approach.
introduction of a new algorithm, Generalize Measure Learnability framework, to implement this approach.
Many situations were presented, Hypothesis Classes that are countable where we can apply the GML framework.
- Score: 16.467540842571328
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An earlier introduced characterization of nonuniform learnability that allows
the sample size to depend on the hypothesis to which the learner is compared
has been redefined using the measure theoretic approach. Where nonuniform
learnability is a strict relaxation of the Probably Approximately Correct
framework. Introduction of a new algorithm, Generalize Measure Learnability
framework, to implement this approach with the study of its sample and
computational complexity bounds. Like the Minimum Description Length principle,
this approach can be regarded as an explication of Occam razor. Furthermore,
many situations were presented, Hypothesis Classes that are countable where we
can apply the GML framework, which we can learn to use the GML scheme and can
achieve statistical consistency.
Related papers
- On the Sample Complexity of a Policy Gradient Algorithm with Occupancy Approximation for General Utility Reinforcement Learning [23.623705771223303]
We propose to approximate occupancy measures within a function approximation class using maximum likelihood estimation (MLE)
We provide a sample complexity analysis of PG-OMA showing that our occupancy measure estimation error only scales with the dimension of our function approximation class rather than the size of the state action space.
arXiv Detail & Related papers (2024-10-05T10:24:07Z) - Bounds on the Generalization Error in Active Learning [0.0]
We establish empirical risk principles for active learning by deriving a family of upper bounds on the generalization error.
We systematically link diverse active learning scenarios, characterized by their loss functions and hypothesis classes to their corresponding upper bounds.
Our results show that regularization techniques used to constraint the complexity of various hypothesis classes are sufficient conditions to ensure the validity of the bounds.
arXiv Detail & Related papers (2024-09-10T08:08:09Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - Hypothesis Testing for Class-Conditional Noise Using Local Maximum
Likelihood [1.8798171797988192]
In supervised learning, automatically assessing the quality of the labels before any learning takes place remains an open research question.
In this paper we show how similar procedures can be followed when the underlying model is a product of Local Maximum Likelihood Estimation.
This different view allows for wider applicability of the tests by offering users access to a richer model class.
arXiv Detail & Related papers (2023-12-15T22:14:58Z) - On Leave-One-Out Conditional Mutual Information For Generalization [122.2734338600665]
We derive information theoretic generalization bounds for supervised learning algorithms based on a new measure of leave-one-out conditional mutual information (loo-CMI)
Contrary to other CMI bounds, our loo-CMI bounds can be computed easily and can be interpreted in connection to other notions such as classical leave-one-out cross-validation.
We empirically validate the quality of the bound by evaluating its predicted generalization gap in scenarios for deep learning.
arXiv Detail & Related papers (2022-07-01T17:58:29Z) - Risk Consistent Multi-Class Learning from Label Proportions [64.0125322353281]
This study addresses a multiclass learning from label proportions (MCLLP) setting in which training instances are provided in bags.
Most existing MCLLP methods impose bag-wise constraints on the prediction of instances or assign them pseudo-labels.
A risk-consistent method is proposed for instance classification using the empirical risk minimization framework.
arXiv Detail & Related papers (2022-03-24T03:49:04Z) - Supervised Multivariate Learning with Simultaneous Feature Auto-grouping
and Dimension Reduction [7.093830786026851]
This paper proposes a novel clustered reduced-rank learning framework.
It imposes two joint matrix regularizations to automatically group the features in constructing predictive factors.
It is more interpretable than low-rank modeling and relaxes the stringent sparsity assumption in variable selection.
arXiv Detail & Related papers (2021-12-17T20:11:20Z) - How Fine-Tuning Allows for Effective Meta-Learning [50.17896588738377]
We present a theoretical framework for analyzing representations derived from a MAML-like algorithm.
We provide risk bounds on the best predictor found by fine-tuning via gradient descent, demonstrating that the algorithm can provably leverage the shared structure.
This separation result underscores the benefit of fine-tuning-based methods, such as MAML, over methods with "frozen representation" objectives in few-shot learning.
arXiv Detail & Related papers (2021-05-05T17:56:00Z) - Amortized Conditional Normalized Maximum Likelihood: Reliable Out of
Distribution Uncertainty Estimation [99.92568326314667]
We propose the amortized conditional normalized maximum likelihood (ACNML) method as a scalable general-purpose approach for uncertainty estimation.
Our algorithm builds on the conditional normalized maximum likelihood (CNML) coding scheme, which has minimax optimal properties according to the minimum description length principle.
We demonstrate that ACNML compares favorably to a number of prior techniques for uncertainty estimation in terms of calibration on out-of-distribution inputs.
arXiv Detail & Related papers (2020-11-05T08:04:34Z) - Learning explanations that are hard to vary [75.30552491694066]
We show that averaging across examples can favor memorization and patchwork' solutions that sew together different strategies.
We then propose and experimentally validate a simple alternative algorithm based on a logical AND.
arXiv Detail & Related papers (2020-09-01T10:17:48Z) - Joint Stochastic Approximation and Its Application to Learning Discrete
Latent Variable Models [19.07718284287928]
We show that the difficulty of obtaining reliable gradients for the inference model and the drawback of indirectly optimizing the target log-likelihood can be gracefully addressed.
We propose to directly maximize the target log-likelihood and simultaneously minimize the inclusive divergence between the posterior and the inference model.
The resulting learning algorithm is called joint SA (JSA)
arXiv Detail & Related papers (2020-05-28T13:50:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.