論文の概要: AIM 2024 Challenge on Video Super-Resolution Quality Assessment: Methods and Results
- arxiv url: http://arxiv.org/abs/2410.04225v1
- Date: Sat, 5 Oct 2024 16:42:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 09:11:41.488730
- Title: AIM 2024 Challenge on Video Super-Resolution Quality Assessment: Methods and Results
- Title(参考訳): AIM 2024 ビデオ超解像品質評価の課題:方法と結果
- Authors: Ivan Molodetskikh, Artem Borisov, Dmitriy Vatolin, Radu Timofte, Jianzhao Liu, Tianwu Zhi, Yabin Zhang, Yang Li, Jingwen Xu, Yiting Liao, Qing Luo, Ao-Xiang Zhang, Peng Zhang, Haibo Lei, Linyan Jiang, Yaqing Li, Yuqin Cao, Wei Sun, Weixia Zhang, Yinan Sun, Ziheng Jia, Yuxin Zhu, Xiongkuo Min, Guangtao Zhai, Weihua Luo, Yupeng Z., Hong Y,
- Abstract要約: 本稿では,AIM(Advanceds in Image Manipulation)ワークショップの一環として,ビデオ・スーパーリゾリューション(SR)品質アセスメント(QA)チャレンジについて紹介する。
この課題の課題は、現代の画像とビデオ-SRアルゴリズムを用いて、2xと4xのアップスケールされたビデオのための客観的QA手法を開発することである。
SR QAの目標は、従来のQA手法の適用範囲が限られているという難題が証明された、最先端のSR QAを前進させることであった。
- 参考スコア(独自算出の注目度): 76.64868221556145
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents the Video Super-Resolution (SR) Quality Assessment (QA) Challenge that was part of the Advances in Image Manipulation (AIM) workshop, held in conjunction with ECCV 2024. The task of this challenge was to develop an objective QA method for videos upscaled 2x and 4x by modern image- and video-SR algorithms. QA methods were evaluated by comparing their output with aggregate subjective scores collected from >150,000 pairwise votes obtained through crowd-sourced comparisons across 52 SR methods and 1124 upscaled videos. The goal was to advance the state-of-the-art in SR QA, which had proven to be a challenging problem with limited applicability of traditional QA methods. The challenge had 29 registered participants, and 5 teams had submitted their final results, all outperforming the current state-of-the-art. All data, including the private test subset, has been made publicly available on the challenge homepage at https://challenges.videoprocessing.ai/challenges/super-resolution-metrics-challenge.html
- Abstract(参考訳): 本稿では,ECCV 2024と共同で開催された画像操作(AIM)ワークショップの一環として行われた,ビデオ超解像(SR)品質アセスメント(QA)チャレンジについて述べる。
この課題の課題は、現代の画像とビデオ-SRアルゴリズムを用いて、2xと4xのアップスケールされたビデオのための客観的QA手法を開発することである。
QA法は,52のSR法と124のアップスケールビデオのクラウドソース比較から得られた150,000対の投票結果から得られた総括的主観的スコアとを比較して評価した。
SR QAの目標は、従来のQA手法の適用範囲が限られているという難題が証明された、最先端のSR QAを前進させることであった。
この挑戦には29人の登録参加者が参加し、5つのチームが最終結果を提出した。
プライベートテストサブセットを含むすべてのデータが、チャレンジホームページのhttps://challenges.processprocessing.ai/challenges/super- resolution-metrics-challengeで公開されている。
関連論文リスト
- AIM 2024 Challenge on Compressed Video Quality Assessment: Methods and Results [120.95863275142727]
本稿では,ECCV 2024における画像操作の進歩(AIM)ワークショップと共同で開催されている圧縮映像品質評価の課題について述べる。
この課題は、様々な圧縮標準の14コーデックで符号化された459本の動画の多様なデータセット上で、VQA法の性能を評価することであった。
論文 参考訳(メタデータ) (2024-08-21T20:32:45Z) - NTIRE 2023 Quality Assessment of Video Enhancement Challenge [97.809937484099]
NTIRE 2023 Quality Assessment of Video Enhancement Challengeについて報告する。
課題は、ビデオ処理分野における大きな課題、すなわち、強化されたビデオに対するビデオ品質評価(VQA)に対処することである。
参加者数は167名。
論文 参考訳(メタデータ) (2023-07-19T02:33:42Z) - NTIRE 2022 Challenge on Perceptual Image Quality Assessment [90.04931572825859]
画像品質評価(IQA)におけるNTIRE 2022の課題について報告する。
この課題は、知覚画像処理アルゴリズムによるIQAの新たな課題に対処するためである。
当選方法は、最先端の性能を示すことができる。
論文 参考訳(メタデータ) (2022-06-23T13:36:49Z) - NTIRE 2021 Challenge on Perceptual Image Quality Assessment [128.83256694901726]
NTIRE 2021の知覚画像品質評価(IQA)に関する課題について報告する。
CVPR 2021では、画像修復・強化ワークショップ(NTIRE)のNew Trendsと連携して開催されました。
新しいタイプの画像処理技術として、GAN(Generative Adversarial Networks)に基づく知覚画像処理アルゴリズムが、より現実的なテクスチャを持つ画像を生成する。
論文 参考訳(メタデータ) (2021-05-07T05:36:54Z) - NTIRE 2021 Challenge on Video Super-Resolution [103.59395980541574]
Super-Resolution (SR) はコンピュータビジョンタスクであり、与えられた低解像度の画像から高解像度のクリーンイメージを得る。
本稿では,NTIRE Challenge on Video Super-Resolutionをレビューする。
論文 参考訳(メタデータ) (2021-04-30T09:12:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。