Unveiling the Impact of Local Homophily on GNN Fairness: In-Depth Analysis and New Benchmarks
- URL: http://arxiv.org/abs/2410.04287v1
- Date: Sat, 5 Oct 2024 21:21:40 GMT
- Title: Unveiling the Impact of Local Homophily on GNN Fairness: In-Depth Analysis and New Benchmarks
- Authors: Donald Loveland, Danai Koutra,
- Abstract summary: Graph Neural Networks (GNNs) often struggle to generalize when graphs exhibit both homophily (same-class connections) and heterophily (different-class connections)
This issue poses a risk in user-centric applications where underrepresented homophily levels are present.
We move beyond global homophily and explore how local homophily levels can lead to unfair predictions.
- Score: 12.077386474432124
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks (GNNs) often struggle to generalize when graphs exhibit both homophily (same-class connections) and heterophily (different-class connections). Specifically, GNNs tend to underperform for nodes with local homophily levels that differ significantly from the global homophily level. This issue poses a risk in user-centric applications where underrepresented homophily levels are present. Concurrently, fairness within GNNs has received substantial attention due to the potential amplification of biases via message passing. However, the connection between local homophily and fairness in GNNs remains underexplored. In this work, we move beyond global homophily and explore how local homophily levels can lead to unfair predictions. We begin by formalizing the challenge of fair predictions for underrepresented homophily levels as an out-of-distribution (OOD) problem. We then conduct a theoretical analysis that demonstrates how local homophily levels can alter predictions for differing sensitive attributes. We additionally introduce three new GNN fairness benchmarks, as well as a novel semi-synthetic graph generator, to empirically study the OOD problem. Across extensive analysis we find that two factors can promote unfairness: (a) OOD distance, and (b) heterophilous nodes situated in homophilous graphs. In cases where these two conditions are met, fairness drops by up to 24% on real world datasets, and 30% in semi-synthetic datasets. Together, our theoretical insights, empirical analysis, and algorithmic contributions unveil a previously overlooked source of unfairness rooted in the graph's homophily information.
Related papers
- The Heterophilic Graph Learning Handbook: Benchmarks, Models, Theoretical Analysis, Applications and Challenges [101.83124435649358]
Homophily principle, ie nodes with the same labels or similar attributes are more likely to be connected.
Recent work has identified a non-trivial set of datasets where GNN's performance compared to the NN's is not satisfactory.
arXiv Detail & Related papers (2024-07-12T18:04:32Z) - The Heterophilic Snowflake Hypothesis: Training and Empowering GNNs for Heterophilic Graphs [59.03660013787925]
We introduce the Heterophily Snowflake Hypothesis and provide an effective solution to guide and facilitate research on heterophilic graphs.
Our observations show that our framework acts as a versatile operator for diverse tasks.
It can be integrated into various GNN frameworks, boosting performance in-depth and offering an explainable approach to choosing the optimal network depth.
arXiv Detail & Related papers (2024-06-18T12:16:00Z) - Heterophilous Distribution Propagation for Graph Neural Networks [23.897535976924722]
We propose heterophilous distribution propagation (HDP) for graph neural networks.
Instead of aggregating information from all neighborhoods, HDP adaptively separates the neighbors into homophilous and heterphilous parts.
We conduct extensive experiments on 9 benchmark datasets with different levels of homophily.
arXiv Detail & Related papers (2024-05-31T06:40:56Z) - Graph Out-of-Distribution Generalization via Causal Intervention [69.70137479660113]
We introduce a conceptually simple yet principled approach for training robust graph neural networks (GNNs) under node-level distribution shifts.
Our method resorts to a new learning objective derived from causal inference that coordinates an environment estimator and a mixture-of-expert GNN predictor.
Our model can effectively enhance generalization with various types of distribution shifts and yield up to 27.4% accuracy improvement over state-of-the-arts on graph OOD generalization benchmarks.
arXiv Detail & Related papers (2024-02-18T07:49:22Z) - On Performance Discrepancies Across Local Homophily Levels in Graph
Neural Networks [17.9878305101678]
Graph Neural Network (GNN) research has highlighted a relationship between high homophily and strong predictive performance in node classification.
We study the performance of GNNs when the local homophily level of a node deviates from the global homophily level.
We show that GNNs designed for globally heterophilous graphs can alleviate performance discrepancy by improving performance across local homophily levels.
arXiv Detail & Related papers (2023-06-08T21:01:24Z) - Demystifying Structural Disparity in Graph Neural Networks: Can One Size
Fit All? [61.35457647107439]
Most real-world homophilic and heterophilic graphs are comprised of a mixture of nodes in both homophilic and heterophilic structural patterns.
We provide evidence that Graph Neural Networks(GNNs) on node classification typically perform admirably on homophilic nodes.
We then propose a rigorous, non-i.i.d PAC-Bayesian generalization bound for GNNs, revealing reasons for the performance disparity.
arXiv Detail & Related papers (2023-06-02T07:46:20Z) - When Do Graph Neural Networks Help with Node Classification?
Investigating the Impact of Homophily Principle on Node Distinguishability [92.8279562472538]
Homophily principle has been believed to be the main reason for the performance superiority of Graph Networks (GNNs) over Neural Networks on node classification tasks.
Recent research suggests that, even in the absence of homophily, the advantage of GNNs still exists as long as nodes from the same class share similar neighborhood patterns.
arXiv Detail & Related papers (2023-04-25T09:40:47Z) - On Graph Neural Network Fairness in the Presence of Heterophilous
Neighborhoods [12.531373572440787]
We study the task of node classification for graph neural networks (GNNs)
We establish a connection between group fairness, as measured by statistical parity and equal opportunity, and local assortativity.
We show that by adopting heterophilous GNN designs, group fairness in locally heterophilous neighborhoods can be improved by up to 25% over homophilous designs in real and synthetic datasets.
arXiv Detail & Related papers (2022-07-10T04:02:20Z) - Is Homophily a Necessity for Graph Neural Networks? [50.959340355849896]
Graph neural networks (GNNs) have shown great prowess in learning representations suitable for numerous graph-based machine learning tasks.
GNNs are widely believed to work well due to the homophily assumption ("like attracts like"), and fail to generalize to heterophilous graphs where dissimilar nodes connect.
Recent works design new architectures to overcome such heterophily-related limitations, citing poor baseline performance and new architecture improvements on a few heterophilous graph benchmark datasets as evidence for this notion.
In our experiments, we empirically find that standard graph convolutional networks (GCNs) can actually achieve better performance than
arXiv Detail & Related papers (2021-06-11T02:44:00Z) - Two Sides of the Same Coin: Heterophily and Oversmoothing in Graph
Convolutional Neural Networks [33.25212467404069]
We theoretically characterize the connections between heterophily and oversmoothing.
We design a model that addresses the discrepancy in features and degrees between neighbors by incorporating signed messages and learned degree corrections.
Our experiments on 9 real networks show that our model achieves state-of-the-art performance under heterophily.
arXiv Detail & Related papers (2021-02-12T11:52:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.