論文の概要: Urban Computing for Climate and Environmental Justice: Early Perspectives From Two Research Initiatives
- arxiv url: http://arxiv.org/abs/2410.04318v1
- Date: Sun, 6 Oct 2024 00:32:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 08:30:03.548737
- Title: Urban Computing for Climate and Environmental Justice: Early Perspectives From Two Research Initiatives
- Title(参考訳): 気候と環境の正義のための都市コンピューティング:2つの研究イニシアティブから
- Authors: Carolina Veiga, Ashish Sharma, Daniel de Oliveira, Marcos Lage, Fabio Miranda,
- Abstract要約: 極度の気象現象は、より頻繁で重大になり、不均等に低所得層や低所得層に影響を及ぼしている。
本稿では,米国シカゴとブラジルのニテロイに2つの多学際プロジェクトについて紹介する。
都市環境における気候関連リスクの理解と緩和を容易にする視覚分析ツールに必要な要件と既存のギャップについて論じる。
- 参考スコア(独自算出の注目度): 2.8980151855313387
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The impacts of climate change are intensifying existing vulnerabilities and disparities within urban communities around the globe, as extreme weather events, including floods and heatwaves, are becoming more frequent and severe, disproportionately affecting low-income and underrepresented groups. Tackling these increasing challenges requires novel approaches that integrate expertise across multiple domains, including computer science, engineering, climate science, and public health. Urban computing can play a pivotal role in these efforts by integrating data from multiple sources to support decision-making and provide actionable insights into weather patterns, infrastructure weaknesses, and population vulnerabilities. However, the capacity to leverage technological advancements varies significantly between the Global South and Global North. In this paper, we present two multiyear, multidisciplinary projects situated in Chicago, USA and Niter\'oi, Brazil, highlighting the opportunities and limitations of urban computing in these diverse contexts. Reflecting on our experiences, we then discuss the essential requirements, as well as existing gaps, for visual analytics tools that facilitate the understanding and mitigation of climate-related risks in urban environments.
- Abstract(参考訳): 気候変動の影響は、洪水や熱波などの極端な気象現象が、低所得層や低所得層に大きく影響しているため、世界中の都市社会における既存の脆弱性や格差を増している。
これらの課題に対処するには、コンピュータ科学、工学、気候科学、公衆衛生など、複数の分野にまたがる専門知識を統合する新しいアプローチが必要である。
都市コンピューティングは、複数のソースからのデータを統合して意思決定をサポートし、気象パターン、インフラの弱点、人口の脆弱性に関する実用的な洞察を提供することによって、これらの取り組みにおいて重要な役割を果たす。
しかし、技術進歩を活用する能力は、グローバル・サウスとグローバル・ノースの間で大きく異なる。
本稿では,米国シカゴとブラジルのニテロイに複数年にわたる多学際プロジェクトを実施し,これらの多様な状況下での都市コンピューティングの可能性と限界を明らかにする。
筆者らの経験を反映して、都市環境における気候関連リスクの理解と緩和を容易にする視覚分析ツールの基本的要件と既存のギャップについて考察する。
関連論文リスト
- Towards A Comprehensive Assessment of AI's Environmental Impact [0.5982922468400899]
機械学習に対する最近の関心の高まりは、AI/MLの大規模採用に拍車をかけた。
ライフサイクルを通じて、AI/MLから環境への影響と劣化を監視するフレームワークが必要である。
本研究では、オープンなエネルギーデータとグローバルに取得した衛星観測を用いて、データセンター周辺におけるAIの多面的影響に関連する環境変数を追跡する手法を提案する。
論文 参考訳(メタデータ) (2024-05-22T21:19:35Z) - The Need for Climate Data Stewardship: 10 Tensions and Reflections regarding Climate Data Governance [0.21756081703275998]
記事は、マルチステークホルダガバナンス、データスチュワードシップ、公平なデータプラクティスへのパラダイムシフトを提唱している。
これらの課題をナビゲートする上で、データスチュワードは重要な役割を担っている。
論文 参考訳(メタデータ) (2024-03-26T21:16:03Z) - Analyzing Regional Impacts of Climate Change using Natural Language
Processing Techniques [0.9387233631570752]
我々は、気候学における特定の地理を特定するために、名前付きエンティティ認識(NER)にBERT(Bidirectional Representations from Transformers)を用いる。
地域ごとの気候傾向分析を行い、特定の地域での気候変動に関連する主要なテーマや関心点を特定する。
これらの地域固有の気候データの詳細な調査は、よりカスタマイズされた政策作成、適応、緩和戦略の作成を可能にする。
論文 参考訳(メタデータ) (2024-01-11T16:44:59Z) - On the Opportunities of Green Computing: A Survey [80.21955522431168]
人工知能(AI)は数十年にわたり、技術と研究において大きな進歩を遂げてきた。
高いコンピューティングパワーの必要性は、より高い二酸化炭素排出量をもたらし、研究の公正性を損なう。
コンピューティングリソースの課題とAIの環境への影響に取り組むため、グリーンコンピューティングはホットな研究トピックとなっている。
論文 参考訳(メタデータ) (2023-11-01T11:16:41Z) - Climate Change Impact on Agricultural Land Suitability: An Interpretable
Machine Learning-Based Eurasia Case Study [94.07737890568644]
2021年現在、世界中で約8億8800万人が飢餓と栄養失調に見舞われている。
気候変動は農地の適性に大きな影響を及ぼし、深刻な食糧不足に繋がる可能性がある。
本研究は,経済・社会問題に苦しむ中央ユーラシアを対象とする。
論文 参考訳(メタデータ) (2023-10-24T15:15:28Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
気候変動は地下水汚染の長期的な土壌管理問題を悪化させる。
U-Net強化フーリエニューラル汚染(PDENO)を用いた物理インフォームド機械学習サロゲートモデルを開発した。
並行して、気候データと組み合わされた畳み込みオートエンコーダを開発し、アメリカ合衆国全体の気候領域の類似性の次元を減少させる。
論文 参考訳(メタデータ) (2022-11-20T06:46:35Z) - Climate Change & Computer Audition: A Call to Action and Overview on
Audio Intelligence to Help Save the Planet [98.97255654573662]
この研究は、オーディオインテリジェンスが気候に関わる課題を克服するために貢献できる領域の概要を提供する。
我々は、地球、水、空気、火、エーテルの5つの要素に従って、潜在的なコンピュータオーディションの応用を分類する。
論文 参考訳(メタデータ) (2022-03-10T13:32:31Z) - Remote sensing, AI and innovative prediction methods for adapting cities
to the impacts of the climate change [0.0]
リモートセンシング画像からインジケータを抽出するのに有用なAIベースのフレームワークを提案する。
これは多くの科学者にとってオープンフィールドであり、現在進行中の研究であり、AIベースの手法の課題と限界について深く議論しています。
論文 参考訳(メタデータ) (2021-07-06T15:55:26Z) - Quantum technologies for climate change: Preliminary assessment [0.0]
気候変動は、人間の社会と地球の生態系に現実的な脅威をもたらす。
コンピューティング、センシング、通信における量子技術は、気候変動の影響を診断し緩和するのに有用なツールとなりうる。
本報告は,4つの主要領域に焦点をあてて,気候変動における量子技術の高インパクト利用の可能性を明らかにすることを目的とする。
論文 参考訳(メタデータ) (2021-06-23T18:02:19Z) - From Static to Dynamic Prediction: Wildfire Risk Assessment Based on
Multiple Environmental Factors [69.9674326582747]
ワイルドファイアはアメリカ合衆国西海岸で頻繁に起こる最大の災害の1つである。
カリフォルニアの山火事リスクが高い地域を解析・評価するための静的・動的予測モデルを提案します。
論文 参考訳(メタデータ) (2021-03-14T17:56:17Z) - Analyzing Sustainability Reports Using Natural Language Processing [68.8204255655161]
近年、企業は環境への影響を緩和し、気候変動の状況に適応することを目指している。
これは、環境・社会・ガバナンス(ESG)の傘下にある様々な種類の気候リスクと暴露を網羅する、ますます徹底した報告を通じて報告されている。
本稿では,本稿で開発したツールと方法論について紹介する。
論文 参考訳(メタデータ) (2020-11-03T21:22:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。