Engineering Si-Qubit MOSFETs: A Phase-Field Modeling Approach Integrating Quantum-Electrostatics at Cryogenic Temperatures
- URL: http://arxiv.org/abs/2410.04339v1
- Date: Sun, 6 Oct 2024 03:25:07 GMT
- Title: Engineering Si-Qubit MOSFETs: A Phase-Field Modeling Approach Integrating Quantum-Electrostatics at Cryogenic Temperatures
- Authors: Nilesh Pandey, Dipanjan Basu, Yogesh Singh Chauhan, Leonard F. Register, Sanjay K. Banerjee,
- Abstract summary: This study employs advanced phase-field modeling to investigate Si-based qubits.
We adopt a comprehensive modeling approach, utilizing full-wave treatment of the Schrodinger equation solutions, coupled with the Poisson equation at cryogenic temperatures.
- Score: 0.3015860973324597
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study employs advanced phase-field modeling to investigate Si-based qubit MOSFETs, integrating electrostatics and quantum mechanical effects. We adopt a comprehensive modeling approach, utilizing full-wave treatment of the Schrodinger equation solutions, coupled with the Poisson equation at cryogenic temperatures. Our analysis explores the influence of interface traps on quantum dot (QD) barrier heights, affecting coupling due to tunneling. A wider trap distribution leads to the decoupling of quantum dots. Furthermore, the oscillations in the transmission and reflection coefficients increase as the plunger/barrier gate length increases, reducing the coupling between the QDs. By optimizing plunger and barrier gate dimensions, spacer configurations, and gap oxide lengths, we enhance control over quantum well depths and minimize unwanted wave function leakage. The modeling algorithm is also validated against the experimental data and can accurately capture the oscillations in the Id Vgs caused by the Coulomb blockade at cryogenic temperature
Related papers
- Local control and mixed dimensions: Exploring high-temperature superconductivity in optical lattices [0.8453109131640921]
Local control and optical bilayer capabilities combined with spatially resolved measurements create a versatile toolbox.
We show how coherent pairing correlations can be accessed in a partially particle-hole transformed and rotated basis.
Finally, we introduce a scheme to measure momentum-resolved dopant densities, providing access to observables complementary to solid-state experiments.
arXiv Detail & Related papers (2024-06-04T17:59:45Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Beyond-adiabatic Quantum Admittance of a Semiconductor Quantum Dot at High Frequencies: Rethinking Reflectometry as Polaron Dynamics [0.0]
We develop a self-consistent quantum master equation formalism to obtain the admittance of a quantum dot tunnel-coupled to a charge reservoir.
We describe two new photon-mediated regimes: Floquet broadening, determined by the dressing of the QD states, and broadening determined by photon loss in the system.
arXiv Detail & Related papers (2023-07-31T14:46:43Z) - Resonance-dominant optomechanical entanglement in open quantum systems [3.586645469368644]
Motivated by entanglement protection, our work utilizes a resonance effect to enhance optomechanical entanglement in the coherent-state representation.
We reveal that protecting continuous-variable entanglement involves the elimination of degrees of freedom associated with significant detuning components, thereby resisting decoherence.
Our study breaks new ground for applying the resonance effect to protect quantum systems from decoherence and advancing the possibilities of large-scale quantum information processing and quantum network construction.
arXiv Detail & Related papers (2023-07-23T17:25:09Z) - Variational waveguide QED simulators [58.720142291102135]
Waveguide QED simulators are made by quantum emitters interacting with one-dimensional photonic band-gap materials.
Here, we demonstrate how these interactions can be a resource to develop more efficient variational quantum algorithms.
arXiv Detail & Related papers (2023-02-03T18:55:08Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Limits to Quantum Gate Fidelity from Near-Field Thermal and Vacuum
Fluctuations [11.344927971260676]
evanescent wave Johnson noise (EWJN) caused by thermal and vacuum fluctuations is an important unmitigated noise.
EWJN induces the decay of spin qubits and limits the quantum gate operation fidelity.
We study the limits to two spin-qubit gate fidelity from EWJN-induced relaxation processes in two experimentally relevant quantum computing platforms.
arXiv Detail & Related papers (2022-07-19T17:55:40Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.