Resonance-dominant optomechanical entanglement in open quantum systems
- URL: http://arxiv.org/abs/2307.12383v2
- Date: Sat, 11 Nov 2023 01:17:36 GMT
- Title: Resonance-dominant optomechanical entanglement in open quantum systems
- Authors: Cheng Shang and Hongchao Li
- Abstract summary: Motivated by entanglement protection, our work utilizes a resonance effect to enhance optomechanical entanglement in the coherent-state representation.
We reveal that protecting continuous-variable entanglement involves the elimination of degrees of freedom associated with significant detuning components, thereby resisting decoherence.
Our study breaks new ground for applying the resonance effect to protect quantum systems from decoherence and advancing the possibilities of large-scale quantum information processing and quantum network construction.
- Score: 3.586645469368644
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motivated by entanglement protection, our work utilizes a resonance effect to
enhance optomechanical entanglement in the coherent-state representation. We
propose a filtering model to filter out the significant detuning components
between a thermal-mechanical mode and its surrounding heat baths in the weak
coupling limit. We reveal that protecting continuous-variable entanglement
involves the elimination of degrees of freedom associated with significant
detuning components, thereby resisting decoherence. We construct a nonlinear
Langevin equation of the filtering model and numerically show that the
filtering model doubles the robustness of the stationary maximum optomechanical
entanglement to the thermal fluctuation noise and mechanical damping.
Furthermore, we generalize these results to an optical cavity array with one
oscillating end-mirror to investigate the long-distance optimal optomechanical
entanglement transfer. Our study breaks new ground for applying the resonance
effect to protect quantum systems from decoherence and advancing the
possibilities of large-scale quantum information processing and quantum network
construction.
Related papers
- Strong coupling at room temperature with a centimeter-scale quartz crystal [0.0]
We report an optomechanical system with independent control over pumping power and frequency detuning to achieve and characterize the strong-coupling regime of a bulk acoustic-wave resonator.
Our results provide valuable insights into the performances of room-temperature macroscopic mechanical systems and their applications in hybrid quantum devices.
arXiv Detail & Related papers (2024-05-28T12:15:05Z) - Limits for coherent optical control of quantum emitters in layered
materials [49.596352607801784]
coherent control of a two-level system is among the most essential challenges in modern quantum optics.
We use a mechanically isolated quantum emitter in hexagonal boron nitride to explore the individual mechanisms which affect the coherence of an optical transition under resonant drive.
New insights on the underlying physical decoherence mechanisms reveals a limit in temperature until which coherent driving of the system is possible.
arXiv Detail & Related papers (2023-12-18T10:37:06Z) - Dissipative and dispersive cavity optomechanics with a
frequency-dependent mirror [0.0]
microcavity-based optomechanical systems are placed in the unresolved-sideband regime, preventing sideband-based ground-state cooling.
We analyze such an optomechanical system, whereby one of the mirrors is strongly frequency-dependent, i.e., a suspended Fano mirror.
We formulate a quantum-coupled-mode description that includes both the standard dispersive optomechanical coupling as well as dissipative coupling.
arXiv Detail & Related papers (2023-11-26T14:20:25Z) - Selective cooling and squeezing in a lossy optomechanical closed loop embodying an exceptional surface [0.0]
We investigate a lossy optomechanical system consisting of one optical and two degenerate mechanical resonators.
In examining a specific quantum attribute, we delve into the control of quadrature variances within the resonator selected through the plaquette phase.
We provide physical insights into how non-Hermiticity plays a crucial role in enhancing cooling and squeezing in proximity to exceptional points.
arXiv Detail & Related papers (2023-07-19T09:19:53Z) - Active-feedback quantum control of an integrated low-frequency
mechanical resonator [0.0]
optomechanical device fabricated using a pick-and-place method, operating in the deep sideband-unresolved limit.
We achieve a minimal average phonon occupation of 0.76 when pre-cooled with liquid helium and 3.5 with liquid nitrogen.
Our method and device are ideally suited for sensing applications directly operating at the quantum limit.
arXiv Detail & Related papers (2023-04-06T00:26:38Z) - Unconditional Wigner-negative mechanical entanglement with
linear-and-quadratic optomechanical interactions [62.997667081978825]
We propose two schemes for generating Wigner-negative entangled states unconditionally in mechanical resonators.
We show analytically that both schemes stabilize a Wigner-negative entangled state that combines the entanglement of a two-mode squeezed vacuum with a cubic nonlinearity.
We then perform extensive numerical simulations to test the robustness of Wigner-negative entanglement attained by approximate CPE states stabilized in the presence of thermal decoherence.
arXiv Detail & Related papers (2023-02-07T19:00:08Z) - Coherent feedback in optomechanical systems in the sideband-unresolved
regime [0.0]
experimentally interesting scheme, based on coherent feedback with linear, passive optical components.
We find that, by introducing an additional passive element, an optomechanical system in the deeply sideband-unresolved regime will exhibit dynamics similar to one that is sideband-resolved.
With this new approach, the experimental realization of groundstate cooling and optomechanical entanglement is well within reach of current integrated state-of-the-art high-Q mechanical resonators.
arXiv Detail & Related papers (2022-06-28T11:49:58Z) - Noise-resilient Edge Modes on a Chain of Superconducting Qubits [103.93329374521808]
Inherent symmetry of a quantum system may protect its otherwise fragile states.
We implement the one-dimensional kicked Ising model which exhibits non-local Majorana edge modes (MEMs) with $mathbbZ$ parity symmetry.
MEMs are found to be resilient against certain symmetry-breaking noise owing to a prethermalization mechanism.
arXiv Detail & Related papers (2022-04-24T22:34:15Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.