論文の概要: CopyLens: Dynamically Flagging Copyrighted Sub-Dataset Contributions to LLM Outputs
- arxiv url: http://arxiv.org/abs/2410.04454v1
- Date: Sun, 6 Oct 2024 11:41:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 07:25:54.525318
- Title: CopyLens: Dynamically Flagging Copyrighted Sub-Dataset Contributions to LLM Outputs
- Title(参考訳): CopyLens: LLM出力に対する著作権付きサブデータセットのコントリビューションを動的にフラグする
- Authors: Qichao Ma, Rui-Jie Zhu, Peiye Liu, Renye Yan, Fahong Zhang, Ling Liang, Meng Li, Zhaofei Yu, Zongwei Wang, Yimao Cai, Tiejun Huang,
- Abstract要約: CopyLensは,著作権付きデータセットが大規模言語モデルの応答に与える影響を分析するフレームワークである。
実験の結果、CopyLensは提案したベースラインよりも効率と精度を15.2%向上し、エンジニアリング手法より58.7%、OOD検出ベースラインより0.21AUC向上した。
- 参考スコア(独自算出の注目度): 39.425944445393945
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have become pervasive due to their knowledge absorption and text-generation capabilities. Concurrently, the copyright issue for pretraining datasets has been a pressing concern, particularly when generation includes specific styles. Previous methods either focus on the defense of identical copyrighted outputs or find interpretability by individual tokens with computational burdens. However, the gap between them exists, where direct assessments of how dataset contributions impact LLM outputs are missing. Once the model providers ensure copyright protection for data holders, a more mature LLM community can be established. To address these limitations, we introduce CopyLens, a new framework to analyze how copyrighted datasets may influence LLM responses. Specifically, a two-stage approach is employed: First, based on the uniqueness of pretraining data in the embedding space, token representations are initially fused for potential copyrighted texts, followed by a lightweight LSTM-based network to analyze dataset contributions. With such a prior, a contrastive-learning-based non-copyright OOD detector is designed. Our framework can dynamically face different situations and bridge the gap between current copyright detection methods. Experiments show that CopyLens improves efficiency and accuracy by 15.2% over our proposed baseline, 58.7% over prompt engineering methods, and 0.21 AUC over OOD detection baselines.
- Abstract(参考訳): 大きな言語モデル(LLM)は、その知識の吸収とテキスト生成能力によって普及している。
同時に、データセットの事前トレーニングに関する著作権問題も、特に生成に特定のスタイルが含まれている場合、深刻な問題となっている。
それまでの方法は、同一の著作権のある出力の防衛に焦点を当てたり、計算負荷のある個々のトークンによる解釈可能性を見出したりしていた。
しかし、それらのギャップは存在し、データセットのコントリビューションがLLM出力にどのように影響するかの直接的な評価が欠けている。
モデルプロバイダがデータ保持者の著作権保護を保証すると、より成熟したLCMコミュニティが確立される。
これらの制限に対処するために、著作権付きデータセットがLLM応答にどのように影響するかを分析するための新しいフレームワークであるCopyLensを紹介します。
まず、埋め込み空間における事前学習データのユニーク性に基づいて、トークン表現は著作権のあるテキストに対して最初に融合され、続いて軽量のLSTMベースのネットワークでデータセットのコントリビューションを分析する。
このような先行して、対照的な学習に基づく非コピーライトOOD検出器が設計されている。
我々のフレームワークは動的に異なる状況に直面することができ、現在の著作権検出方法のギャップを埋めることができます。
実験の結果、CopyLensは提案したベースラインよりも効率と精度を15.2%向上し、エンジニアリング手法より58.7%、OOD検出ベースラインより0.21AUC向上した。
関連論文リスト
- A Bayesian Approach to Harnessing the Power of LLMs in Authorship Attribution [57.309390098903]
著者の属性は、文書の起源または著者を特定することを目的としている。
大きな言語モデル(LLM)とその深い推論能力と長距離テキストアソシエーションを維持する能力は、有望な代替手段を提供する。
IMDbおよびブログデータセットを用いた結果, 著者10名を対象に, 著者1名に対して, 85%の精度が得られた。
論文 参考訳(メタデータ) (2024-10-29T04:14:23Z) - Measuring Copyright Risks of Large Language Model via Partial Information Probing [14.067687792633372]
LLM(Large Language Models)のトレーニングに使用されるデータソースについて検討する。
著作権のあるテキストの一部をLSMに入力し、それを完了するように促し、生成したコンテンツとオリジナルの著作権のある資料の重複を分析します。
これらの部分的な入力に基づいて著作権素材と重なり合うコンテンツをLLMが生成できることが本研究で実証された。
論文 参考訳(メタデータ) (2024-09-20T18:16:05Z) - Can Watermarking Large Language Models Prevent Copyrighted Text Generation and Hide Training Data? [62.72729485995075]
著作権文書の生成に対する抑止剤としての透かしの有効性について検討する。
我々は、透かしがメンバーシップ推論攻撃(MIA)の成功率に悪影響を及ぼすことを発見した。
透かしにおける最近のMIAの成功率を改善するための適応的手法を提案する。
論文 参考訳(メタデータ) (2024-07-24T16:53:09Z) - Entropy Law: The Story Behind Data Compression and LLM Performance [115.70395740286422]
モデル性能はトレーニングデータの圧縮比と負の相関関係にあり,トレーニング損失が小さくなるのが普通である。
エントロピー法則の知見に基づいて, 極めて効率的で普遍的なデータ選択法を提案する。
また,モデルトレーニング開始時の潜在的な性能リスクを検出するエントロピー法則の興味深い応用を提案する。
論文 参考訳(メタデータ) (2024-07-09T08:14:29Z) - Evaluating Copyright Takedown Methods for Language Models [100.38129820325497]
言語モデル(LM)は、潜在的に著作権のある資料を含む様々なデータに対する広範な訓練からその能力を引き出す。
本稿では,LMの著作権削除の可能性と副作用を初めて評価する。
システムプロンプトの追加、デコード時間フィルタリングの介入、未学習アプローチなど、いくつかの戦略を検討する。
論文 参考訳(メタデータ) (2024-06-26T18:09:46Z) - Peering into the Mind of Language Models: An Approach for Attribution in Contextual Question Answering [9.86691461253151]
大規模言語モデル(LLM)の隠れ状態表現を利用した文脈質問応答における帰属手法を提案する。
提案手法は,より詳細な属性を提供し,生成した回答の質を保ちながら,広範囲なモデル再訓練および検索モデルオーバーヘッドの必要性を回避している。
本稿では,LLM世代に対するトークンレベルのアノテーションを文脈質問応答設定に有する属性データセットであるVerifiability-granularを提案する。
論文 参考訳(メタデータ) (2024-05-28T09:12:44Z) - Source Attribution for Large Language Model-Generated Data [57.85840382230037]
合成テキストの生成に寄与したデータプロバイダを特定することで、ソース属性を実行できることが不可欠である。
我々はこの問題を透かしによって取り組めることを示した。
本稿では,アルゴリズム設計により,これらの重要な特性を満足する情報源属性フレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-01T12:02:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。