論文の概要: SITCOM: Step-wise Triple-Consistent Diffusion Sampling for Inverse Problems
- arxiv url: http://arxiv.org/abs/2410.04479v1
- Date: Sun, 6 Oct 2024 13:39:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 07:16:09.647993
- Title: SITCOM: Step-wise Triple-Consistent Diffusion Sampling for Inverse Problems
- Title(参考訳): SITCOM: 逆問題に対するステップワイドトリプル一貫性拡散サンプリング
- Authors: Ismail Alkhouri, Shijun Liang, Cheng-Han Huang, Jimmy Dai, Qing Qu, Saiprasad Ravishankar, Rongrong Wang,
- Abstract要約: 拡散モデル(英: Diffusion Model、DM)は、トレーニングセット上で学習した分布からサンプリングできる生成モデルのクラスである。
DMは通常、画像空間内の測定条件分布からおよそサンプルに修正される。
これらの修正は、特定の設定(測定ノイズの存在など)や非線形タスクには適さないかもしれない。
測定一貫性拡散軌道を達成するための3つの条件を述べる。
- 参考スコア(独自算出の注目度): 14.2814208019426
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion models (DMs) are a class of generative models that allow sampling from a distribution learned over a training set. When applied to solving inverse imaging problems (IPs), the reverse sampling steps of DMs are typically modified to approximately sample from a measurement-conditioned distribution in the image space. However, these modifications may be unsuitable for certain settings (such as in the presence of measurement noise) and non-linear tasks, as they often struggle to correct errors from earlier sampling steps and generally require a large number of optimization and/or sampling steps. To address these challenges, we state three conditions for achieving measurement-consistent diffusion trajectories. Building on these conditions, we propose a new optimization-based sampling method that not only enforces the standard data manifold measurement consistency and forward diffusion consistency, as seen in previous studies, but also incorporates backward diffusion consistency that maintains a diffusion trajectory by optimizing over the input of the pre-trained model at every sampling step. By enforcing these conditions, either implicitly or explicitly, our sampler requires significantly fewer reverse steps. Therefore, we refer to our accelerated method as Step-wise Triple-Consistent Sampling (SITCOM). Compared to existing state-of-the-art baseline methods, under different levels of measurement noise, our extensive experiments across five linear and three non-linear image restoration tasks demonstrate that SITCOM achieves competitive or superior results in terms of standard image similarity metrics while requiring a significantly reduced run-time across all considered tasks.
- Abstract(参考訳): 拡散モデル(英: Diffusion Model、DM)は、トレーニングセット上で学習した分布からサンプリングできる生成モデルのクラスである。
逆画像問題 (IPs) の解法に適用する場合、DMの逆サンプリングステップは、通常、画像空間における測定条件分布からおよそサンプルに修正される。
しかしながら、これらの修正は特定の設定(測定ノイズの存在など)や非線形タスクには適さないかもしれない。
これらの課題に対処するために、測定一貫性の拡散軌道を達成するための3つの条件を述べる。
これらの条件に基づいて,従来の研究のように標準データ多様体測定の一貫性と前方拡散の一貫性を強制するだけでなく,各サンプリングステップにおける事前学習モデルの入力を最適化することにより拡散軌道を維持する後方拡散の整合性も備えた,新しい最適化に基づくサンプリング手法を提案する。
これらの条件を暗黙的または明示的に強制することで、サンプルははるかに少ない逆ステップを必要とします。
そこで我々はSITCOM(Step-wise Triple-Consistent Sampling)と呼ぶ。
従来の最先端のベースライン法と比較して,5つの線形および3つの非線形画像復元タスクにわたる広範囲な実験により,SITCOMが標準画像類似度測定の点で競争力や優れた結果を得ると同時に,検討対象のすべてのタスクに対して実行時間を大幅に短縮することを示した。
関連論文リスト
- Fast constrained sampling in pre-trained diffusion models [77.21486516041391]
拡散モデルは、大規模な生成画像モデルの分野を支配してきた。
本研究では,大規模な事前学習拡散モデルにおける高速拘束サンプリングのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-24T14:52:38Z) - Diffusion Prior-Based Amortized Variational Inference for Noisy Inverse Problems [12.482127049881026]
そこで本稿では, 償却変分推論の観点から, 拡散による逆問題の解法を提案する。
我々の償却推論は、測定結果を対応するクリーンデータの暗黙の後方分布に直接マッピングする関数を学習し、未知の計測でも単一ステップの後方サンプリングを可能にする。
論文 参考訳(メタデータ) (2024-07-23T02:14:18Z) - CoSIGN: Few-Step Guidance of ConSIstency Model to Solve General INverse Problems [3.3969056208620128]
我々は, 高い復元品質を維持しつつ, 推論ステップの境界を1-2 NFEに推し進めることを提案する。
本手法は拡散型逆問題解法における新しい最先端技術を実現する。
論文 参考訳(メタデータ) (2024-07-17T15:57:50Z) - Improving Diffusion Inverse Problem Solving with Decoupled Noise Annealing [84.97865583302244]
本稿では,新しいノイズアニーリングプロセスに依存するDAPS (Decoupled Annealing Posterior Sampling) 法を提案する。
DAPSは、複数の画像復元タスクにおけるサンプル品質と安定性を著しく改善する。
例えば、フェーズ検索のためのFFHQ 256データセット上で、PSNRが30.72dBである場合、既存の手法と比較して9.12dBの改善となる。
論文 参考訳(メタデータ) (2024-07-01T17:59:23Z) - Fast Samplers for Inverse Problems in Iterative Refinement Models [19.099632445326826]
逆問題に対する効率的なサンプル作成のためのプラグイン・アンド・プレイフレームワークを提案する。
提案手法は,5段階の条件付きサンプリングステップで高品質なサンプルを生成でき,20~1000段の基準ラインよりも優れる。
論文 参考訳(メタデータ) (2024-05-27T21:50:16Z) - Accelerating Parallel Sampling of Diffusion Models [25.347710690711562]
自己回帰過程を並列化することにより拡散モデルのサンプリングを高速化する新しい手法を提案する。
これらの手法を適用したParaTAAは、普遍的でトレーニング不要な並列サンプリングアルゴリズムである。
実験により、ParaTAAは一般的なシーケンシャルサンプリングアルゴリズムで要求される推論ステップを4$sim$14倍に削減できることを示した。
論文 参考訳(メタデータ) (2024-02-15T14:27:58Z) - Reflected Diffusion Models [93.26107023470979]
本稿では,データのサポートに基づいて進化する反射微分方程式を逆転する反射拡散モデルを提案する。
提案手法は,一般化されたスコアマッチング損失を用いてスコア関数を学習し,標準拡散モデルの主要成分を拡張する。
論文 参考訳(メタデータ) (2023-04-10T17:54:38Z) - Improving Diffusion Models for Inverse Problems using Manifold Constraints [55.91148172752894]
我々は,現在の解法がデータ多様体からサンプルパスを逸脱し,エラーが蓄積することを示す。
この問題に対処するため、多様体の制約に着想を得た追加の補正項を提案する。
本手法は理論上も経験上も従来の方法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-06-02T09:06:10Z) - Deblurring via Stochastic Refinement [85.42730934561101]
条件付き拡散モデルに基づくブラインドデブロアリングのための代替フレームワークを提案する。
提案手法は,PSNRなどの歪み指標の点で競合する。
論文 参考訳(メタデータ) (2021-12-05T04:36:09Z) - Toward Real-World Super-Resolution via Adaptive Downsampling Models [58.38683820192415]
本研究では,制約のある事前知識を伴わずに未知のサンプル処理をシミュレートする手法を提案する。
対の例を使わずに対象LR画像の分布を模倣する汎用化可能な低周波損失(LFL)を提案する。
論文 参考訳(メタデータ) (2021-09-08T06:00:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。