論文の概要: Video Summarization with Large Language Models
- arxiv url: http://arxiv.org/abs/2504.11199v1
- Date: Tue, 15 Apr 2025 13:56:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-16 22:09:42.434627
- Title: Video Summarization with Large Language Models
- Title(参考訳): 大規模言語モデルを用いたビデオ要約
- Authors: Min Jung Lee, Dayoung Gong, Minsu Cho,
- Abstract要約: 本稿では,近年のLarge Language Models (LLM) の機能を活用したビデオ要約フレームワークを提案する。
LLM-based Video Summarization (LLMVS) と呼ばれる我々の手法は、ビデオフレームをMulti-Modal Large Language Model (MLLM) を用いて一連のキャプションに変換する。
実験の結果,提案手法は標準ベンチマークにおける既存手法よりも優れていることが示された。
- 参考スコア(独自算出の注目度): 41.51242348081083
- License:
- Abstract: The exponential increase in video content poses significant challenges in terms of efficient navigation, search, and retrieval, thus requiring advanced video summarization techniques. Existing video summarization methods, which heavily rely on visual features and temporal dynamics, often fail to capture the semantics of video content, resulting in incomplete or incoherent summaries. To tackle the challenge, we propose a new video summarization framework that leverages the capabilities of recent Large Language Models (LLMs), expecting that the knowledge learned from massive data enables LLMs to evaluate video frames in a manner that better aligns with diverse semantics and human judgments, effectively addressing the inherent subjectivity in defining keyframes. Our method, dubbed LLM-based Video Summarization (LLMVS), translates video frames into a sequence of captions using a Muti-modal Large Language Model (M-LLM) and then assesses the importance of each frame using an LLM, based on the captions in its local context. These local importance scores are refined through a global attention mechanism in the entire context of video captions, ensuring that our summaries effectively reflect both the details and the overarching narrative. Our experimental results demonstrate the superiority of the proposed method over existing ones in standard benchmarks, highlighting the potential of LLMs in the processing of multimedia content.
- Abstract(参考訳): 映像コンテンツの指数的増加は、効率的なナビゲーション、検索、検索において大きな課題をもたらし、高度な映像要約技術を必要とする。
既存の映像要約手法は、視覚的特徴や時間的ダイナミクスに大きく依存しており、しばしばビデオ内容の意味を捉えず、不完全あるいは不整合な要約となる。
この課題に対処するために,近年のLarge Language Models (LLMs) の機能を活用した新たな映像要約フレームワークを提案する。
LLMに基づくビデオ要約(LLMVS)と呼ばれるこの手法は,ビデオフレームをM-LLM(Mti-modal Large Language Model)を用いて一連のキャプションに変換し,そのローカルコンテキストのキャプションに基づいて各フレームの重要性を評価する。
これらの局所的な重要度スコアは、ビデオキャプション全体におけるグローバルな注意機構を通じて洗練され、要約が詳細と全体的物語の両方を効果的に反映することを保証する。
実験により,提案手法が標準ベンチマークで提案手法よりも優れていることを示すとともに,マルチメディアコンテンツの処理におけるLLMの可能性を強調した。
関連論文リスト
- Realizing Video Summarization from the Path of Language-based Semantic Understanding [19.825666473712197]
本稿では,Mixture of Experts(MoE)パラダイムに触発された新しいビデオ要約フレームワークを提案する。
提案手法は,複数のビデオLLMを統合し,包括的で一貫性のあるテキスト要約を生成する。
論文 参考訳(メタデータ) (2024-10-06T15:03:22Z) - MLLM as Video Narrator: Mitigating Modality Imbalance in Video Moment Retrieval [53.417646562344906]
Video Moment Retrieval (VMR) は、自然言語クエリが与えられた未トリミング長ビデオ内の特定の時間セグメントをローカライズすることを目的としている。
既存の方法は、しばしば不十分なトレーニングアノテーションに悩まされる。つまり、文は通常、単語の多様性が制限された前景の顕著なビデオ内容のごく一部と一致する。
この本質的なモダリティの不均衡は、視覚情報のかなりの部分がテキストと一致しないまま残されている。
本研究では,MLLMをビデオナレーターとして用いて,ビデオのテキスト記述を多用し,モダリティの不均衡を緩和し,時間的局所化を促進させる。
論文 参考訳(メタデータ) (2024-06-25T18:39:43Z) - Language-Guided Self-Supervised Video Summarization Using Text Semantic Matching Considering the Diversity of the Video [22.60291297308379]
本研究では,映像要約タスクを自然言語処理(NLP)タスクに変換する可能性について検討する。
本手法は,ランク相関係数のSumMeデータセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2024-05-14T18:07:04Z) - Scaling Up Video Summarization Pretraining with Large Language Models [73.74662411006426]
本稿では,大規模ビデオ要約データセットを生成するための,自動化されたスケーラブルなパイプラインを提案する。
我々は既存のアプローチの限界を分析し、それらに効果的に対処する新しいビデオ要約モデルを提案する。
我々の研究は、プロが注釈付けした高品質の要約を持つ1200本の長編ビデオを含む新しいベンチマークデータセットも提示した。
論文 参考訳(メタデータ) (2024-04-04T11:59:06Z) - Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional Tokenization [52.63845811751936]
ダイナミックスビデオのモデリングのため、ビデオ事前トレーニングは難しい。
本稿では,ビデオ事前学習におけるこのような制限を,効率的なビデオ分解によって解決する。
筆者らのフレームワークは,13のマルチモーダルベンチマークにおいて,画像と映像のコンテントの理解と生成が可能であることを実証した。
論文 参考訳(メタデータ) (2024-02-05T16:30:49Z) - Video Understanding with Large Language Models: A Survey [97.29126722004949]
言語・マルチモーダルタスクにおける大規模言語モデル(LLM)の顕著な機能を考えると,近年の映像理解の進歩について概観する。
Vid-LLMの創発的能力は驚くほど進歩しており、特にオープンな多粒性推論能力がある。
本調査は,Vid-LLMのタスク,データセット,ベンチマーク,評価方法論に関する総合的研究である。
論文 参考訳(メタデータ) (2023-12-29T01:56:17Z) - VidCoM: Fast Video Comprehension through Large Language Models with Multimodal Tools [44.78291853329394]
textbfVidCoMは、Large Language Models (LLM)を活用して、軽量なビジュアルツールを使用して動画を推論する高速適応フレームワークである。
InsOVERアルゴリズムは、言語命令の分解とビデオイベントの間の効率的なハンガリー語マッチングに基づいて、対応するビデオイベントを特定する。
論文 参考訳(メタデータ) (2023-10-16T17:05:56Z) - Video Summarization Based on Video-text Modelling [0.0]
ビデオのセマンティック表現を得るために,マルチモーダルな自己教師型学習フレームワークを提案する。
また,より優れた要約を生成するために,動画内の重要なコンテンツを段階的にピンポイントするプログレッシブな映像要約手法も導入する。
映像分類に基づく映像要約の質を客観的に評価する枠組みを提案する。
論文 参考訳(メタデータ) (2022-01-07T15:21:46Z) - CLIP-It! Language-Guided Video Summarization [96.69415453447166]
この作業では、ジェネリックとクエリにフォーカスしたビデオ要約に対処する単一のフレームワークであるCLIP-Itを導入する。
本稿では,言語誘導型マルチモーダルトランスフォーマーを提案する。
本モデルは, 地道的な監督を伴わずに, 訓練により教師なしの設定に拡張することができる。
論文 参考訳(メタデータ) (2021-07-01T17:59:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。