論文の概要: Radial Basis Operator Networks
- arxiv url: http://arxiv.org/abs/2410.04639v1
- Date: Sun, 6 Oct 2024 22:10:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 02:47:36.392936
- Title: Radial Basis Operator Networks
- Title(参考訳): Radial Basis Operator Networks
- Authors: Jason Kurz, Sean Oughton, Shitao Liu,
- Abstract要約: ラジアルベース演算子ネットワーク(RBON)は、複雑な値入力を受け入れるように調整されたとき、時間領域と周波数領域の両方の演算子を学習できる最初の演算子ネットワークである。
RBONは、いくつかのベンチマークケースでは、1ドル未満のOOD(in-out-of-distriion data)とout-of-distriion data)に対して、L2$の小さな相対的テストエラーを誇っている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Operator networks are designed to approximate nonlinear operators, which provide mappings between infinite-dimensional spaces such as function spaces. These networks are playing an increasingly important role in machine learning, with their most notable contributions in the field of scientific computing. Their significance stems from their ability to handle the type of data often encountered in scientific applications. For instance, in climate modeling or fluid dynamics, input data typically consists of discretized continuous fields (like temperature distributions or velocity fields). We introduce the radial basis operator network (RBON), which represents a significant advancement as the first operator network capable of learning an operator in both the time domain and frequency domain when adjusted to accept complex-valued inputs. Despite the small, single hidden-layer structure, the RBON boasts small $L^2$ relative test error for both in- and out-of-distribution data (OOD) of less than $1\times 10^{-7}$ in some benchmark cases. Moreover, the RBON maintains small error on OOD data from entirely different function classes from the training data.
- Abstract(参考訳): 作用素ネットワークは、関数空間のような無限次元空間間の写像を提供する非線形作用素を近似するように設計されている。
これらのネットワークは、機械学習においてますます重要な役割を担い、その最も注目すべき貢献は科学コンピューティングの分野である。
その重要性は、科学的な応用でしばしば遭遇するタイプのデータを扱う能力に起因している。
例えば、気候モデリングや流体力学では、入力データは典型的には離散化された連続体(温度分布や速度場など)から構成される。
複雑な入力を受け付けるように調整した場合に、時間領域と周波数領域の両方で演算子を学習できる最初の演算子ネットワークとして、重要な進歩を示す放射基底演算子ネットワーク(RBON)を導入する。
RBONは、小さな単一の隠蔽層構造にもかかわらず、いくつかのベンチマークケースでは、1ドル未満のOOD(in-of-distriion data)とout-of-distriion data)に対して、L^2$の相対的テスト誤差が小さい。
さらにRBONは、トレーニングデータとは全く異なる関数クラスからOODデータに小さなエラーを保持する。
関連論文リスト
- Efficient Model Adaptation for Continual Learning at the Edge [15.334881190102895]
ほとんどの機械学習(ML)システムは、トレーニングとデプロイメントの間、定常的で一致したデータ分散を前提としている。
データ分布は、環境要因、センサー特性、タスク・オブ・関心などの変化により、時間とともに変化することが多い。
本稿では,ドメインシフト下での効率的な連続学習のためのアダプタ・リコンフィグレータ(EAR)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-03T23:55:17Z) - Neural networks trained with SGD learn distributions of increasing
complexity [78.30235086565388]
勾配降下法を用いてトレーニングされたニューラルネットワークは、まず低次入力統計を用いて入力を分類する。
その後、トレーニング中にのみ高次の統計を利用する。
本稿では,DSBと他の単純度バイアスとの関係について論じ,学習における普遍性の原理にその意味を考察する。
論文 参考訳(メタデータ) (2022-11-21T15:27:22Z) - On-Device Domain Generalization [93.79736882489982]
ドメインの一般化はデバイス上の機械学習アプリケーションにとって重要である。
知識蒸留がこの問題の解決の有力な候補であることがわかった。
本研究では,教師が配布外データをどのように扱えるかを学生に教えることを目的とした,配布外知識蒸留(OKD)という簡単なアイデアを提案する。
論文 参考訳(メタデータ) (2022-09-15T17:59:31Z) - CHALLENGER: Training with Attribution Maps [63.736435657236505]
ニューラルネットワークのトレーニングに属性マップを利用すると、モデルの正規化が向上し、性能が向上することを示す。
特に、我々の汎用的なドメインに依存しないアプローチは、ビジョン、自然言語処理、時系列タスクにおける最先端の結果をもたらすことを示す。
論文 参考訳(メタデータ) (2022-05-30T13:34:46Z) - MIONet: Learning multiple-input operators via tensor product [2.5426761219054312]
バナッハ空間の積上で定義された複数入力演算子に対するニューラルネットワークによる演算子の回帰について検討する。
我々の理論と低ランク近似に基づいて、我々は新しいニューラル演算子、MIONetを提案し、複数入力演算子を学習する。
論文 参考訳(メタデータ) (2022-02-12T20:37:04Z) - MLReal: Bridging the gap between training on synthetic data and real
data applications in machine learning [1.9852463786440129]
本稿では,実際のデータ特徴を持つ合成データの教師付きトレーニングを強化するための新しいアプローチについて述べる。
トレーニング段階では、入力データは合成ドメインから、自動相関データは実ドメインからである。
推論/アプリケーション段階では、入力データは実サブセットドメインからであり、自己相関区間の平均は合成データサブセットドメインからである。
論文 参考訳(メタデータ) (2021-09-11T14:43:34Z) - Transformer-Based Behavioral Representation Learning Enables Transfer
Learning for Mobile Sensing in Small Datasets [4.276883061502341]
時系列から一般化可能な特徴表現を学習できるモバイルセンシングデータのためのニューラルネットワークフレームワークを提供する。
このアーキテクチャは、CNNとTrans-formerアーキテクチャの利点を組み合わせて、より良い予測性能を実現する。
論文 参考訳(メタデータ) (2021-07-09T22:26:50Z) - Rank-R FNN: A Tensor-Based Learning Model for High-Order Data
Classification [69.26747803963907]
Rank-R Feedforward Neural Network (FNN)は、そのパラメータにCanonical/Polyadic分解を課すテンソルベースの非線形学習モデルである。
まず、入力をマルチリニアアレイとして扱い、ベクトル化の必要性を回避し、すべてのデータ次元に沿って構造情報を十分に活用することができる。
Rank-R FNNの普遍的な近似と学習性の特性を確立し、実世界のハイパースペクトルデータセットのパフォーマンスを検証する。
論文 参考訳(メタデータ) (2021-04-11T16:37:32Z) - Deep Parametric Continuous Convolutional Neural Networks [92.87547731907176]
Parametric Continuous Convolutionは、非グリッド構造化データ上で動作する、新たな学習可能な演算子である。
室内および屋外シーンの点雲セグメンテーションにおける最先端技術よりも顕著な改善が見られた。
論文 参考訳(メタデータ) (2021-01-17T18:28:23Z) - Understanding Self-Training for Gradual Domain Adaptation [107.37869221297687]
段階的なドメイン適応は、対象領域へ徐々にシフトするラベルのないデータのみを与えられたソースドメインで訓練された初期分類器を適応させることが目的である。
目標領域への直接適応が非有界誤差をもたらすような設定下において、段階的なシフトを伴う自己学習の誤差に対する最初の非無空上界を証明した。
この理論解析はアルゴリズムの洞察を導き、無限のデータを持つ場合でも正規化とラベルのシャープ化が不可欠であることを強調し、より小さなワッサーシュタイン無限距離のシフトに対して自己学習が特にうまく働くことを示唆している。
論文 参考訳(メタデータ) (2020-02-26T08:59:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。