Knowledge Graph Based Agent for Complex, Knowledge-Intensive QA in Medicine
- URL: http://arxiv.org/abs/2410.04660v1
- Date: Mon, 7 Oct 2024 00:17:37 GMT
- Title: Knowledge Graph Based Agent for Complex, Knowledge-Intensive QA in Medicine
- Authors: Xiaorui Su, Yibo Wang, Shanghua Gao, Xiaolong Liu, Valentina Giunchiglia, Djork-Arné Clevert, Marinka Zitnik,
- Abstract summary: Biomedical scientists do not rely on a single approach to reasoning.
KGARevion is a knowledge graph based agent designed to address the complexity of medical queries.
- Score: 31.080514888803886
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Biomedical knowledge is uniquely complex and structured, requiring distinct reasoning strategies compared to other scientific disciplines like physics or chemistry. Biomedical scientists do not rely on a single approach to reasoning; instead, they use various strategies, including rule-based, prototype-based, and case-based reasoning. This diversity calls for flexible approaches that accommodate multiple reasoning strategies while leveraging in-domain knowledge. We introduce KGARevion, a knowledge graph (KG) based agent designed to address the complexity of knowledge-intensive medical queries. Upon receiving a query, KGARevion generates relevant triplets by using the knowledge base of the LLM. These triplets are then verified against a grounded KG to filter out erroneous information and ensure that only accurate, relevant data contribute to the final answer. Unlike RAG-based models, this multi-step process ensures robustness in reasoning while adapting to different models of medical reasoning. Evaluations on four gold-standard medical QA datasets show that KGARevion improves accuracy by over 5.2%, outperforming 15 models in handling complex medical questions. To test its capabilities, we curated three new medical QA datasets with varying levels of semantic complexity, where KGARevion achieved a 10.4% improvement in accuracy.
Related papers
- RGAR: Recurrence Generation-augmented Retrieval for Factual-aware Medical Question Answering [29.065294682044]
The current paradigm, Retrieval-Augmented Generation (RAG), acquires expertise medical knowledge through large-scale corpus retrieval.
This paper introduces RGAR, a recurrence generation-augmented retrieval framework that retrieves both relevant factual and conceptual knowledge from dual sources.
arXiv Detail & Related papers (2025-02-19T01:50:10Z) - Improving Clinical Question Answering with Multi-Task Learning: A Joint Approach for Answer Extraction and Medical Categorization [2.380499804323775]
We introduce a Multi-Task Learning framework that jointly trains CQA models for both answer extraction and medical categorization.
In addition to predicting answer spans, our model classifies responses into five standardized medical categories: Diagnosis, Medication, Symptoms, Procedure, and Lab Reports.
Results show that MTL improves F1-score by 2.2% compared to standard fine-tuning, while achieving 90.7% accuracy in answer categorization.
arXiv Detail & Related papers (2025-02-18T18:20:37Z) - Adaptive Knowledge Graphs Enhance Medical Question Answering: Bridging the Gap Between LLMs and Evolving Medical Knowledge [6.977177904883792]
AMG-RAG is a comprehensive framework that automates the construction and continuous updating of medical knowledge graphs.
It integrates reasoning, and retrieves current external evidence, such as PubMed and WikiSearch.
It achieves an F1 score of 74.1 percent on MEDQA and an accuracy of 66.34 percent on MEDMCQA, outperforming both comparable models and those 10 to 100 times larger.
arXiv Detail & Related papers (2025-02-18T16:29:45Z) - Comprehensive and Practical Evaluation of Retrieval-Augmented Generation Systems for Medical Question Answering [70.44269982045415]
Retrieval-augmented generation (RAG) has emerged as a promising approach to enhance the performance of large language models (LLMs)
We introduce Medical Retrieval-Augmented Generation Benchmark (MedRGB) that provides various supplementary elements to four medical QA datasets.
Our experimental results reveals current models' limited ability to handle noise and misinformation in the retrieved documents.
arXiv Detail & Related papers (2024-11-14T06:19:18Z) - MMed-RAG: Versatile Multimodal RAG System for Medical Vision Language Models [49.765466293296186]
Recent progress in Medical Large Vision-Language Models (Med-LVLMs) has opened up new possibilities for interactive diagnostic tools.
Med-LVLMs often suffer from factual hallucination, which can lead to incorrect diagnoses.
We propose a versatile multimodal RAG system, MMed-RAG, designed to enhance the factuality of Med-LVLMs.
arXiv Detail & Related papers (2024-10-16T23:03:27Z) - Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KARE is a novel framework that integrates knowledge graph (KG) community-level retrieval with large language models (LLMs) reasoning.
Extensive experiments demonstrate that KARE outperforms leading models by up to 10.8-15.0% on MIMIC-III and 12.6-12.7% on MIMIC-IV for mortality and readmission predictions.
arXiv Detail & Related papers (2024-10-06T18:46:28Z) - FEDMEKI: A Benchmark for Scaling Medical Foundation Models via Federated Knowledge Injection [83.54960238236548]
FEDMEKI not only preserves data privacy but also enhances the capability of medical foundation models.
FEDMEKI allows medical foundation models to learn from a broader spectrum of medical knowledge without direct data exposure.
arXiv Detail & Related papers (2024-08-17T15:18:56Z) - ScholarChemQA: Unveiling the Power of Language Models in Chemical Research Question Answering [54.80411755871931]
Question Answering (QA) effectively evaluates language models' reasoning and knowledge depth.
Chemical QA plays a crucial role in both education and research by effectively translating complex chemical information into readily understandable format.
This dataset reflects typical real-world challenges, including an imbalanced data distribution and a substantial amount of unlabeled data that can be potentially useful.
We introduce a QAMatch model, specifically designed to effectively answer chemical questions by fully leveraging our collected data.
arXiv Detail & Related papers (2024-07-24T01:46:55Z) - XAIQA: Explainer-Based Data Augmentation for Extractive Question
Answering [1.1867812760085572]
We introduce a novel approach, XAIQA, for generating synthetic QA pairs at scale from data naturally available in electronic health records.
Our method uses the idea of a classification model explainer to generate questions and answers about medical concepts corresponding to medical codes.
arXiv Detail & Related papers (2023-12-06T15:59:06Z) - Towards Medical Artificial General Intelligence via Knowledge-Enhanced
Multimodal Pretraining [121.89793208683625]
Medical artificial general intelligence (MAGI) enables one foundation model to solve different medical tasks.
We propose a new paradigm called Medical-knedge-enhanced mulTimOdal pretRaining (MOTOR)
arXiv Detail & Related papers (2023-04-26T01:26:19Z) - DIVERSE: bayesian Data IntegratiVE learning for precise drug ResponSE
prediction [27.531532648298768]
DIVERSE is a framework to predict drug responses from data of cell lines, drugs, and gene interactions.
It integrates data sources systematically, in a step-wise manner, examining the importance of each added data set in turn.
It clearly outperformed five other methods including three state-of-the-art approaches.
arXiv Detail & Related papers (2021-03-31T12:40:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.