Building Damage Assessment in Conflict Zones: A Deep Learning Approach Using Geospatial Sub-Meter Resolution Data
- URL: http://arxiv.org/abs/2410.04802v1
- Date: Mon, 7 Oct 2024 07:26:38 GMT
- Title: Building Damage Assessment in Conflict Zones: A Deep Learning Approach Using Geospatial Sub-Meter Resolution Data
- Authors: Matteo Risso, Alessia Goffi, Beatrice Alessandra Motetti, Alessio Burrello, Jean Baptiste Bove, Enrico Macii, Massimo Poncino, Daniele Jahier Pagliari, Giuseppe Maffeis,
- Abstract summary: We build an annotated dataset with pre- and post-conflict images of the Ukrainian city of Mariupol.
We then explore the transferability of the CNN models in both zero-shot and learning scenarios.
This is the first study to use sub-meter resolution imagery to assess building damage in combat zones.
- Score: 9.146968506196446
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Very High Resolution (VHR) geospatial image analysis is crucial for humanitarian assistance in both natural and anthropogenic crises, as it allows to rapidly identify the most critical areas that need support. Nonetheless, manually inspecting large areas is time-consuming and requires domain expertise. Thanks to their accuracy, generalization capabilities, and highly parallelizable workload, Deep Neural Networks (DNNs) provide an excellent way to automate this task. Nevertheless, there is a scarcity of VHR data pertaining to conflict situations, and consequently, of studies on the effectiveness of DNNs in those scenarios. Motivated by this, our work extensively studies the applicability of a collection of state-of-the-art Convolutional Neural Networks (CNNs) originally developed for natural disasters damage assessment in a war scenario. To this end, we build an annotated dataset with pre- and post-conflict images of the Ukrainian city of Mariupol. We then explore the transferability of the CNN models in both zero-shot and learning scenarios, demonstrating their potential and limitations. To the best of our knowledge, this is the first study to use sub-meter resolution imagery to assess building damage in combat zones.
Related papers
- Cross-View Geolocalization and Disaster Mapping with Street-View and VHR Satellite Imagery: A Case Study of Hurricane IAN [9.128051274958356]
We propose a novel disaster mapping framework, namely CVDisaster, to simultaneously address geolocalization and damage perception estimation.
CVDisaster consists of two cross-view models, where CVDisaster-Geoloc refers to a cross-view geolocalization model.
We show that CVDisaster can achieve highly competitive performance (over 80% for geolocalization and 75% for damage perception estimation) with even limited fine-tuning efforts.
arXiv Detail & Related papers (2024-08-13T09:37:26Z) - Towards Efficient Disaster Response via Cost-effective Unbiased Class Rate Estimation through Neyman Allocation Stratified Sampling Active Learning [11.697034536189094]
We present an innovative algorithm that constructs Neyman stratified random sampling trees for binary classification.
Our findings demonstrate that our method surpasses both passive and conventional active learning techniques.
It effectively addresses the'sampling bias' challenge in traditional active learning strategies.
arXiv Detail & Related papers (2024-05-28T01:34:35Z) - Deep Learning in Earthquake Engineering: A Comprehensive Review [0.0]
The literature lacks a comprehensive review that systematically covers a consistent scope intersecting Deep Learning (DL) and earthquake engineering.
The article first discusses methodological advances to elucidate various applicable DL techniques, such as multi-layer perceptron (MLP), convolutional neural network (CNN), recurrent neural network (RNN), generative adversarial network (GAN), autoencoder (AE), transfer learning (TL), reinforcement learning (RL), and graph neural network (GNN)
A thorough research landscape is then disclosed by exploring various DL applications across different research topics, including vision-based seismic damage assessment and structural characterization, seismic demand and
arXiv Detail & Related papers (2024-05-15T01:22:30Z) - AB2CD: AI for Building Climate Damage Classification and Detection [0.0]
We explore the implementation of deep learning techniques for precise building damage assessment in the context of natural hazards.
We tackle the challenges of generalization to novel disasters and regions while accounting for the influence of low-quality and noisy labels.
Our research findings showcase the potential and limitations of advanced AI solutions in enhancing the impact assessment of climate change-induced extreme weather events.
arXiv Detail & Related papers (2023-09-03T03:37:04Z) - Adversarial training with informed data selection [53.19381941131439]
Adrial training is the most efficient solution to defend the network against these malicious attacks.
This work proposes a data selection strategy to be applied in the mini-batch training.
The simulation results show that a good compromise can be obtained regarding robustness and standard accuracy.
arXiv Detail & Related papers (2023-01-07T12:09:50Z) - A General Purpose Neural Architecture for Geospatial Systems [142.43454584836812]
We present a roadmap towards the construction of a general-purpose neural architecture (GPNA) with a geospatial inductive bias.
We envision how such a model may facilitate cooperation between members of the community.
arXiv Detail & Related papers (2022-11-04T09:58:57Z) - Interpretability in Convolutional Neural Networks for Building Damage
Classification in Satellite Imagery [0.0]
We use a dataset that includes labeled pre- and post-disaster satellite imagery to assess building damage on a per-building basis.
We train multiple convolutional neural networks (CNNs) to assess building damage on a per-building basis.
Our research seeks to computationally contribute to aiding in this ongoing and growing humanitarian crisis, heightened by anthropogenic climate change.
arXiv Detail & Related papers (2022-01-24T16:55:56Z) - Attribute-Guided Adversarial Training for Robustness to Natural
Perturbations [64.35805267250682]
We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space.
Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations.
arXiv Detail & Related papers (2020-12-03T10:17:30Z) - Graph Backdoor [53.70971502299977]
We present GTA, the first backdoor attack on graph neural networks (GNNs)
GTA departs in significant ways: it defines triggers as specific subgraphs, including both topological structures and descriptive features.
It can be instantiated for both transductive (e.g., node classification) and inductive (e.g., graph classification) tasks.
arXiv Detail & Related papers (2020-06-21T19:45:30Z) - RescueNet: Joint Building Segmentation and Damage Assessment from
Satellite Imagery [83.49145695899388]
RescueNet is a unified model that can simultaneously segment buildings and assess the damage levels to individual buildings and can be trained end-to-end.
RescueNet is tested on the large scale and diverse xBD dataset and achieves significantly better building segmentation and damage classification performance than previous methods.
arXiv Detail & Related papers (2020-04-15T19:52:09Z) - DeFeat-Net: General Monocular Depth via Simultaneous Unsupervised
Representation Learning [65.94499390875046]
DeFeat-Net is an approach to simultaneously learn a cross-domain dense feature representation.
Our technique is able to outperform the current state-of-the-art with around 10% reduction in all error measures.
arXiv Detail & Related papers (2020-03-30T13:10:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.