論文の概要: A Review of Artificial Intelligence based Biological-Tree Construction: Priorities, Methods, Applications and Trends
- arxiv url: http://arxiv.org/abs/2410.04815v1
- Date: Mon, 7 Oct 2024 08:00:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 01:47:52.525783
- Title: A Review of Artificial Intelligence based Biological-Tree Construction: Priorities, Methods, Applications and Trends
- Title(参考訳): 人工知能を用いた生物軌道構築の概観--優先順位,方法,応用,動向
- Authors: Zelin Zang, Yongjie Xu, Chenrui Duan, Jinlin Wu, Stan Z. Li, Zhen Lei,
- Abstract要約: 生物学的ツリー分析は、生物、遺伝子、細胞間の進化的および分化的関係を明らかにする重要なツールとなる。
従来の木推論手法は、初期の研究に基礎を置いているが、大規模で複雑なデータセットを処理する際の制限が増大している。
ディープラーニングの最近の進歩は有望なソリューションを提供し、データ処理とパターン認識機能を提供する。
- 参考スコア(独自算出の注目度): 43.12448177569722
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Biological tree analysis serves as a pivotal tool in uncovering the evolutionary and differentiation relationships among organisms, genes, and cells. Its applications span diverse fields including phylogenetics, developmental biology, ecology, and medicine. Traditional tree inference methods, while foundational in early studies, face increasing limitations in processing the large-scale, complex datasets generated by modern high-throughput technologies. Recent advances in deep learning offer promising solutions, providing enhanced data processing and pattern recognition capabilities. However, challenges remain, particularly in accurately representing the inherently discrete and non-Euclidean nature of biological trees. In this review, we first outline the key biological priors fundamental to phylogenetic and differentiation tree analyses, facilitating a deeper interdisciplinary understanding between deep learning researchers and biologists. We then systematically examine the commonly used data formats and databases, serving as a comprehensive resource for model testing and development. We provide a critical analysis of traditional tree generation methods, exploring their underlying biological assumptions, technical characteristics, and limitations. Current developments in deep learning-based tree generation are reviewed, highlighting both recent advancements and existing challenges. Furthermore, we discuss the diverse applications of biological trees across various biological domains. Finally, we propose potential future directions and trends in leveraging deep learning for biological tree research, aiming to guide further exploration and innovation in this field.
- Abstract(参考訳): 生物学的ツリー分析は、生物、遺伝子、細胞間の進化的および分化的関係を明らかにする重要なツールとなる。
その応用分野は系統学、発達生物学、生態学、医学など多岐にわたる。
従来の木推論手法は、初期の研究に基礎を置いているが、現代の高スループット技術によって生成される大規模で複雑なデータセットの処理において、限界が増大している。
ディープラーニングの最近の進歩は有望なソリューションを提供し、データ処理とパターン認識機能を提供する。
しかし、課題は、特に自然に離散的で非ユークリッド的な生物学的木の性質を正確に表現することにある。
本総説では, 系統解析および分化木解析の基礎となる生物的前提を概説し, 深層学習研究者と生物学者の間での学際的理解を深める。
次に、一般的に使われているデータ形式とデータベースを体系的に検討し、モデルテストと開発のための包括的なリソースとして機能する。
従来の木生成手法を批判的に分析し,その基礎となる生物学的仮定,技術的特徴,限界について考察する。
ディープラーニングに基づくツリー生成の現況を概観し、最近の進歩と既存の課題を取り上げている。
さらに,様々な生物ドメインにまたがる生物木の多様な応用について論じる。
最後に,生物木研究に深層学習を活用するための将来的な方向性と動向を提案し,この分野のさらなる探索と革新を導くことを目的とする。
関連論文リスト
- Large Language Models for Bioinformatics [58.892165394487414]
本調査はバイオインフォマティクス特化言語モデル(BioLM)の進化,分類,特徴の識別に焦点をあてる。
疾患診断, 薬物発見, ワクチン開発などの重要な分野において, バイオフィルムの幅広い応用について検討する。
データプライバシやセキュリティ上の問題,解釈可能性の問題,トレーニングデータやモデル出力のバイアス,ドメイン適応複雑性など,BioLMに固有の重要な課題や制限を特定します。
論文 参考訳(メタデータ) (2025-01-10T01:43:05Z) - Biology Instructions: A Dataset and Benchmark for Multi-Omics Sequence Understanding Capability of Large Language Models [51.316001071698224]
本稿では,生物配列関連命令チューニングデータセットであるBiology-Instructionsを紹介する。
このデータセットは、大きな言語モデル(LLM)と複雑な生物学的シーケンスに関連するタスクのギャップを埋めることができます。
また、新たな3段階トレーニングパイプラインを備えたChatMultiOmicsという強力なベースラインも開発しています。
論文 参考訳(メタデータ) (2024-12-26T12:12:23Z) - Causal Representation Learning from Multimodal Biological Observations [57.00712157758845]
我々は,マルチモーダルデータに対するフレキシブルな識別条件の開発を目指している。
我々は、各潜伏成分の識別可能性を保証するとともに、サブスペース識別結果を事前の作業から拡張する。
我々の重要な理論的要素は、異なるモーダル間の因果関係の構造的空間性である。
論文 参考訳(メタデータ) (2024-11-10T16:40:27Z) - Unified Representation of Genomic and Biomedical Concepts through Multi-Task, Multi-Source Contrastive Learning [45.6771125432388]
言語モデル(genEREL)を用いたジェノミクス表現について紹介する。
GENERELは遺伝学と生物医学の知識基盤を橋渡しするために設計されたフレームワークである。
本実験は,SNPと臨床概念のニュアンス関係を効果的に把握するgenERELの能力を実証するものである。
論文 参考訳(メタデータ) (2024-10-14T04:19:52Z) - Generalized knowledge-enhanced framework for biomedical entity and relation extraction [0.6856896119187885]
バイオメディカルな実体と関係抽出のためのタスク非依存で再利用可能な背景知識グラフを構築するための新しいフレームワークを開発する。
私たちのモデルの設計は、人間がドメイン固有のトピックを学ぶ方法にインスパイアされています。
我々のフレームワークは、そのような共通知識共有機構を用いて、異なるドメイン固有のバイオメディカルテキストに効果的に転送可能な学習が可能な、一般的なニューラルネットワーク知識グラフを構築する。
論文 参考訳(メタデータ) (2024-08-13T04:06:45Z) - Progress and Opportunities of Foundation Models in Bioinformatics [77.74411726471439]
基礎モデル(FM)は、特に深層学習の領域において、計算生物学の新しい時代に定着した。
我々の焦点は、特定の生物学的問題にFMを応用することであり、研究ニーズに適切なFMを選択するために研究コミュニティを指導することを目的としています。
データノイズ、モデル説明可能性、潜在的なバイアスなど、生物学においてFMが直面する課題と限界を分析します。
論文 参考訳(メタデータ) (2024-02-06T02:29:17Z) - ProBio: A Protocol-guided Multimodal Dataset for Molecular Biology Lab [67.24684071577211]
研究結果を複製するという課題は、分子生物学の分野に重大な障害をもたらしている。
まず、この目的に向けた最初のステップとして、ProBioという名前の包括的なマルチモーダルデータセットをキュレートする。
次に、透明なソリューショントラッキングとマルチモーダルなアクション認識という2つの挑戦的なベンチマークを考案し、BioLab設定におけるアクティビティ理解に関連する特徴と難しさを強調した。
論文 参考訳(メタデータ) (2023-11-01T14:44:01Z) - Multimodal Data Integration for Oncology in the Era of Deep Neural Networks: A Review [0.0]
多様なデータ型を統合することで、がんの診断と治療の精度と信頼性が向上する。
ディープニューラルネットワークは、洗練されたマルチモーダルデータ融合アプローチの開発を促進する。
グラフニューラルネットワーク(GNN)やトランスフォーマーといった最近のディープラーニングフレームワークは、マルチモーダル学習において顕著な成功を収めている。
論文 参考訳(メタデータ) (2023-03-11T17:52:03Z) - Biologically-informed deep learning models for cancer: fundamental
trends for encoding and interpreting oncology data [0.0]
本稿では,癌生物学における推論を支援するために用いられる深層学習(DL)モデルに着目した構造化文献解析を行う。
この研究は、既存のモデルが、先行知識、生物学的妥当性、解釈可能性とのより良い対話の必要性にどのように対処するかに焦点を当てている。
論文 参考訳(メタデータ) (2022-07-02T12:11:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。